Abstract
Single Node Genetic Programming (SNGP) offers a new approach to GP in which every member of the population consists of just a single program node. Operands are formed from other members of the population, and evolution is driven by a hill-climbing approach using a single reversible operator. When the functions being used in the problem are free from side effects, it is possible to make use of a form of dynamic programming, which provides huge efficiency gains. In this research we turn our attention to the use of SNGP when the solution of problems relies on the presence of side effects. We demonstrate that SNGP can still be superior to conventional GP, and examine the role of evolutionary strategies in achieving this.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Jackson, D.: A New, Node-Focused Model for Genetic Programming. In: Moraglio, A., Silva, S., Krawiec, K., Machado, P., Cotta, C. (eds.) EuroGP 2012. LNCS, vol. 7244, pp. 49–60. Springer, Heidelberg (2012)
Oltean, M.: Evolving Digital Circuits using Multi-Expression Programming. In: Zebulum, R.S., et al. (eds.) Proc. 2004 NASA/DoD Conf. on Evolvable Hardware, Seattle, USA, pp. 87–97 (2004)
Oltean, M.: Solving Even-Parity Problems using Multi-Expression Programming. In: Chen, C., et al. (eds.) Proc. 7th Joint Conf. on Information Sciences, North Carolina, USA, vol. 1, pp. 295–298 (2003)
Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)
Brameier, M., Banzhaf, W.: Linear Genetic Programming. Springer, Heidelberg (2007)
Teller, A., Veloso, M.: PADO: Learning Tree Structured Algorithms for Orchestration into an Object Recognition System. Technical Report CS-95-101, Department of Computer Science, Carnegie-Mellon University, USA (1995)
Poli, R.: Parallel Distributed Genetic Programming. In: Corne, D., et al. (eds.) New Ideas in Optimization, pp. 779–805. McGraw-Hill Ltd., UK (1999)
Miller, J.F., Thomson, P.: Cartesian Genetic Programming. In: Poli, R., Banzhaf, W., Langdon, W.B., Miller, J., Nordin, P., Fogarty, T.C. (eds.) EuroGP 2000. LNCS, vol. 1802, pp. 121–132. Springer, Heidelberg (2000)
Clegg, J., Walker, J.A., Miller, J.F.: A New Crossover Technique for Cartesian Genetic Programming. In: Thierens, D., et al. (eds.) Proc. Genetic and Evolutionary Computing Conf (GECCO 2007), London, England, UK, pp. 1580–1587 (2007)
Shirakawa, S., Ogino, S., Nagao, T.: Graph Structured Program Evolution. In: Thierens, D., et al. (eds.) Proc. Genetic and Evolutionary Computing Conf (GECCO 2007), London, England, UK, pp. 1686–1693 (2007)
Kantschik, W., Banzhaf, W.: Linear-Tree GP and Its Comparison with Other GP Structures. In: Miller, J., Tomassini, M., Lanzi, P.L., Ryan, C., Tetamanzi, A.G.B., Langdon, W.B. (eds.) EuroGP 2001. LNCS, vol. 2038, pp. 302–312. Springer, Heidelberg (2001)
Kantschik, W., Banzhaf, W.: Linear-Graph GP - A New GP Structure. In: Foster, J.A., Lutton, E., Miller, J., Ryan, C., Tettamanzi, A.G.B. (eds.) EuroGP 2002. LNCS, vol. 2278, pp. 83–92. Springer, Heidelberg (2002)
Galvan-Lopez, E.: Efficient Graph-Based Genetic Programming Representation with Multiple Outputs. International Journal of Automation and Computing 5(1), 81–89 (2008)
Langdon, W.B., Poli, R.: Why Ants are Hard. In: Koza, J.R., et al. (eds.) Genetic Programming 1998: Proceedings of the Third Annual Conference, pp. 193–201. Morgan Kaufmann (1998)
Jackson, D.: Dormant Program Nodes and the Efficiency of Genetic Programming. In: Beyer, H.-G., et al. (eds.) Proc. Genetic and Evolutionary Computing Conf (GECCO 2005), Washington DC, pp. 1745–1751. ACM Press, New York (2005)
Langdon, W.B., Soule, T., Poli, R., Foster, J.: The Evolution of Size and Shape. In: Spector, L., et al. (eds.) Advances in Genetic Programming, vol. 3, pp. 163–190. MIT Press, Cambridge (1999)
Soule, T.: Code Growth in Genetic Programming. PhD Thesis, University of Idaho (1998)
Jackson, D.: Parsing and Translation of Expressions by Genetic Programming. In: Beyer, H.-G., O’Reilly, U.-M. (eds.) Proc. Genetic and Evolutionary Computation Conf (GECCO), Washington, DC, pp. 1681–1688. ACM Press, New York (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Jackson, D. (2012). Single Node Genetic Programming on Problems with Side Effects. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds) Parallel Problem Solving from Nature - PPSN XII. PPSN 2012. Lecture Notes in Computer Science, vol 7491. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32937-1_33
Download citation
DOI: https://doi.org/10.1007/978-3-642-32937-1_33
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-32936-4
Online ISBN: 978-3-642-32937-1
eBook Packages: Computer ScienceComputer Science (R0)