Skip to main content

Generalized Compressed Network Search

  • Conference paper
Parallel Problem Solving from Nature - PPSN XII (PPSN 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7491))

Included in the following conference series:

  • 1930 Accesses

Abstract

This paper presents initial results of Generalized Compressed Network Search (GCNS), a method for automatically identifying the important frequencies for neural networks encoded as Fourier-type coefficients (i.e. “compressed” networks [7]). GCNS is a general search procedure in this coefficient space – both the number of frequencies and their value are automatically determined by employing the use of variable-length chromosomes, inspired by messy genetic algorithms. The method achieves better compression than our previous approach, and promises improved generalization for evolved controllers. Results for a high-dimensional Octopus arm control problem show that a high fitness 3680-weight network can be encoded using less than 10 coefficients using the frequencies identified by GCNS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Dürr, P., Mattiussi, C., Floreano, D.: Neuroevolution with analog genetic encoding. In: PPSN, pp. 671–680 (2006)

    Google Scholar 

  2. Goldberg, D., Korb, B., Deb, K.: Messy genetic algorithms: Motivation, analysis, and first results. Complex systems 3(5), 493–530 (1989)

    MathSciNet  MATH  Google Scholar 

  3. Goldberg, D.E., Deb, K., Kargupta, H., Harik, G.: Rapid, accurate optimization of difficult problems using fast messy genetic algorithms. In: Proc. of the Fifth International Conference on Genetic Algorithms, pp. 56–64. Morgan Kaufmann (1993)

    Google Scholar 

  4. Gomez, F., Koutník, J., Schmidhuber, J.: Compressed Network Complexity Search. In: Coello Coello, C.A., et al. (eds.) PPSN 2012, Part I. LNCS, vol. 7491, pp. 316–326. Springer, Heidelberg (2012)

    Google Scholar 

  5. Gruau, F.: Cellular encoding of genetic neural networks. Technical Report RR-92-21, Ecole Normale Superieure de Lyon, Institut IMAG, Lyon, France (1992)

    Google Scholar 

  6. Kitano, H.: Designing neural networks using genetic algorithms with graph generation system. Complex Systems 4, 461–476 (1990)

    MATH  Google Scholar 

  7. Koutník, J., Gomez, F., Schmidhuber, J.: Evolving neural networks in compressed weight space. In: Proc. of the 12th Annual Conference on Genetic and Evolutionary Computation, pp. 619–626. ACM (2010)

    Google Scholar 

  8. Koutník, J., Gomez, F., Schmidhuber, J.: Searching for minimal neural networks in fourier space. In: Proc. of the 4th Conf. on Artificial General Intelligence (2010)

    Google Scholar 

  9. Schmidhuber, J.: Discovering neural nets with low Kolmogorov complexity and high generalization capability. Neural Networks 10(5), 857–873 (1997)

    Article  Google Scholar 

  10. Yekutieli, Y., Sagiv-Zohar, R., Aharonov, R., Engel, Y., Hochner, B., Flash, T.: Dynamic model of the octopus arm. I. Biomechanics of the octopus reaching movement. Journal of Neurophysiology 94(2), 1443–1458 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Srivastava, R.K., Schmidhuber, J., Gomez, F. (2012). Generalized Compressed Network Search. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds) Parallel Problem Solving from Nature - PPSN XII. PPSN 2012. Lecture Notes in Computer Science, vol 7491. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32937-1_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32937-1_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32936-4

  • Online ISBN: 978-3-642-32937-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics