Skip to main content

HappyCat – A Simple Function Class Where Well-Known Direct Search Algorithms Do Fail

  • Conference paper
Parallel Problem Solving from Nature - PPSN XII (PPSN 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7491))

Included in the following conference series:

  • 2040 Accesses

Abstract

A new class of simple and scalable test functions for unconstrained real-parameter optimization will be proposed. Even though these functions have only one minimizer, they yet appear difficult to be optimized using standard state-of-the-art EAs such as CMA-ES, PSO, and DE. The test functions share properties observed when evolving at the edge of feasibility of constraint problems: while the step-sizes (or mutation strength) drops down exponentially fast, the EA is still far way from the minimizer giving rise to premature convergence. The design principles for this new function class, called HappyCat, will be explained. Furthermore, an idea for a new type of evolution strategy, the Ray-ES, will be outlined that might be able to tackle such problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Mallipeddi, R., Suganthan, P.N.: Problem Definitions and Evaluation Criteria for the CEC 2010 Competition on Constrained Real-Parameter Optimization. Technical report, Nanyang Technological University (2010)

    Google Scholar 

  2. Hansen, N., Müller, S.D., Koumoutsakos, P.: Reducing the Time Complexity of the Derandomized Evolution Strategy with Covariance Matrix Adaptation (CMA-ES). Evolutionary Computation 11(1), 1–18 (2003)

    Article  Google Scholar 

  3. Arnold, D.V.: Analysis of a Repair Mechanism for the (1, λ)-ES Applied to a simple constrained problem. In: Krasnogor, J., et al. (eds.) GECCO-2011: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 853–860. ACM, New York (2011)

    Google Scholar 

  4. Hansen, N., Ostermeier, A.: Completely Derandomized Self-Adaptation in Evolution Strategies. Evolutionary Computation 9(2), 159–195 (2001)

    Article  Google Scholar 

  5. Oyman, A.I.: Convergence Behavior of Evolution Strategies on Ridge Functions. Ph.D. Thesis, University of Dortmund, Department of Computer Science (1999)

    Google Scholar 

  6. Feoktistov, V.: Differential Evolution: In Search of Solutions. Springer-Verlag New York, Inc., Secaucus (2006)

    MATH  Google Scholar 

  7. Clerc, M.: Particle Swarm Optimization. ISTE Ltd., London, UK (2006)

    Google Scholar 

  8. Beyer, H.-G., Deb, K.: On Self-Adaptive Features in Real-Parameter Evolutionary Algorithms. IEEE Transactions on Evolutionary Computation 5(3), 250–270 (2001)

    Article  Google Scholar 

  9. Hansen, N., Auger, A., Finck, S., Ros, R.: Real-parameter black-box optimization benchmarking 2010: Experimental setup. Technical Report RR-7215, INRIA (2010)

    Google Scholar 

  10. Beyer, H.-G., Schwefel, H.-P.: Evolution Strategies: A Comprehensive Introduction. Natural Computing 1(1), 3–52 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Beyer, HG., Finck, S. (2012). HappyCat – A Simple Function Class Where Well-Known Direct Search Algorithms Do Fail. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds) Parallel Problem Solving from Nature - PPSN XII. PPSN 2012. Lecture Notes in Computer Science, vol 7491. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32937-1_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32937-1_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32936-4

  • Online ISBN: 978-3-642-32937-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics