Abstract
Some Genetic Programming (GP) systems have fewer structural constraints than expression tree GP, permitting a wider range of operators. Using one such system, TAG3P, we compared the effects of such new operators with more standard ones on individual fitness, size and depth, comparing them on a number of symbolic regression and tree structuring problems. The operator effects were diverse, as the originators had claimed. The results confirm the overall primacy of crossover, but strongly suggest that new operators can usefully supplement, or even replace, subtree mutation. They give a better understanding of the features of each operator, and the contexts where it is likely to be useful. They illuminate the diverse effects of different operators, and provide justification for adaptive use of a range of operators.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Daida, J., Li, H., Tang, R., Hilss, A.: What Makes a Problem GP-hard? Validating a Hypothesis of Structural Causes. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2724, pp. 1665–1677. Springer, Heidelberg (2003)
Daida, J.M., Bertram, R.R., Stanhope, S.A., Khoo, J.C., Chaudhary, S.A., Chaudhri, O.A., Polito, J.A.I.: What makes a problem gp-hard? analysis of a tunably difficult problem in genetic programming. Genetic Programming and Evolvable Machines 2, 165–191 (2001), doi:10.1023/A:1011504414730
Ferreira, C.: Gene Expression Programming: Mathematical Modeling by an Artificial Intelligence. Springer (2002)
Goldberg, D.E., O’Reilly, U.-M.: Where Does the Good Stuff Go, and Why? How Contextual Semantics Influences Program Structure in Simple Genetic Programming. In: Banzhaf, W., Poli, R., Schoenauer, M., Fogarty, T.C. (eds.) EuroGP 1998. LNCS, vol. 1391, pp. 16–36. Springer, Heidelberg (1998)
Gustafson, S., Vanneschi, L.: Operator-Based Distance for Genetic Programming: Subtree Crossover Distance. In: Keijzer, M., Tettamanzi, A.G.B., Collet, P., van Hemert, J., Tomassini, M. (eds.) EuroGP 2005. LNCS, vol. 3447, pp. 178–189. Springer, Heidelberg (2005)
Hoai, N.: A Flexible Representation for Genetic Programming: Lessons from Natural Language Processing. Ph.D. thesis, University of New South Wales, Australian Defence Force Academy, Australia (2004)
Hoai, N., McKay, R.: A framework for tree adjunct grammar guided genetic programming. In: Proc. Postgraduate Conf. on Computer Science, Canberra, Australia, pp. 93–99 (2001)
Hugosson, J., Hemberg, E., Brabazon, A., O’Neill, M.: Genotype representations in grammatical evolution. Applied Soft Computing 10(1), 36–43 (2010)
Joshi, A.K., Levy, L.S., Takahashi, M.: Tree adjunct grammars. Journal of Computer and System Sciences 10(1), 136–163 (1975)
Kim, M., McKay, R.I.B., Kim, D.K., Nguyen, X.H.: Evolutionary Operator Self-adaptation with Diverse Operators. In: Moraglio, A., Silva, S., Krawiec, K., Machado, P., Cotta, C. (eds.) EuroGP 2012. LNCS, vol. 7244, pp. 230–241. Springer, Heidelberg (2012)
Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)
Langdon, W.B.: Size fair and homologous tree crossovers for tree genetic programming. Genetic Programming and Evolvable Machines 1(1-2), 95–119 (2000)
Langdon, W., Soule, T., Poli, R., Foster, J.: The evolution of size and shape. In: Advances in Genetic Programming, vol. 3, ch.8, pp. 163–190. The MIT Press, Cambridge (1999)
Moraglio, A., Poli, R.: Topological Interpretation of Crossover. In: Deb, K., Tari, Z. (eds.) GECCO 2004. LNCS, vol. 3102, pp. 1377–1388. Springer, Heidelberg (2004)
O’ Reilly, U., Goldberg, D.: How fitness structure affects subsolution acquisition in genetic programming. Genetic Programming 98, 269–277 (1998)
Poli, R., McPhee, N.: General schema theory for genetic programming with subtree-swapping crossover: Part i. Evolutionary Computation 11(1), 53–66 (2003)
Tackett, W., Carmi, A.: The unique implications of brood selection for genetic programming. In: World Congress on Computational Intelligence, Orlando, FL, USA, vol. 1, pp. 160–165 (June 1994)
Whigham, P.A.: A schema theorem for context-free grammars. In: IEEE Conf. on Evolutionary Computation, vol. 1, pp. 178–181. IEEE Press (November 1995)
Whigham, P., et al.: Grammatically-based genetic programming. In: Proc. Workshop on Genetic Programming: From Theory to Real-World Applications, July 9, pp. 33–41. Ueniversity of Rochester (1995)
Wineberg, M., Oppacher, F.: Distance between Populations. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2723, pp. 1481–1492. Springer, Heidelberg (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kim, M., McKay, B.(., Kim, K., Nguyen, X.H. (2012). Analysing the Effects of Diverse Operators in a Genetic Programming System. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds) Parallel Problem Solving from Nature - PPSN XII. PPSN 2012. Lecture Notes in Computer Science, vol 7491. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32937-1_39
Download citation
DOI: https://doi.org/10.1007/978-3-642-32937-1_39
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-32936-4
Online ISBN: 978-3-642-32937-1
eBook Packages: Computer ScienceComputer Science (R0)