Skip to main content

Analyzing the Behaviour of Population-Based Algorithms Using Rayleigh Distribution

  • Conference paper
Parallel Problem Solving from Nature - PPSN XII (PPSN 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7491))

Included in the following conference series:

  • 1936 Accesses

Abstract

This paper presents a new mathematical approach to study the behaviour of population-based methods. The calculation of the takeover time and the dynamical growth curves is a common analytical approach to measure the selection pressure of an EA and any algorithm which manipulates a set of solutions. In this work, we propose a new and more accurate model to calculate these values. This new model also includes other very interesting features, such as the characterization of the complete behaviour of the methods using a single value, the Rayleigh distribution parameter. We also extend the study to consider the effect of the mutation (or in general, any neighborhood exploration operator) and we show several advanced uses of this models such as building self-adaptive techniques or comparing algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Goldberg, D.E., Deb, K.: A Comparative Analysis of Selection Schemes Used in Genetic Algorithms. In: Rawlins, G.J. (ed.) Foundations of Genetic Algorithms, pp. 69–93. Morgan Kaufmann, San Mateo (1991)

    Google Scholar 

  2. Sarma, J., De Jong, K.: An Analysis of Local Selection Algorithms in a Spatially Structured Evolutionary Algorithm. In: Bäck, T. (ed.) Proceedings of the 7th International Conference on Genetic Algorithms, pp. 181–186. Morgan Kaufmann, San Francisco (1997)

    Google Scholar 

  3. Alba, E., Luque, G.: Theoretical Models of Selection Pressure for dEAs: Topology Influence. In: Corne, D., et al. (eds.) 2005 IEEE Congress on Evolutionary Computation (CEC 2005), Edinburgh, UK, pp. 214–222 (2005)

    Google Scholar 

  4. Sprave, J.: A Unified Model of Non-Panmictic Population Structures in Evolutionary Algorithms. In: Angeline, P.J., Michalewicz, Z., Schoenauer, M., Yao, X., Zalzala, A. (eds.) Proceedings of the Congress of Evolutionary Computation, Mayflower Hotel, Washington D.C., USA, vol. 2, pp. 1384–1391. IEEE Press (July 1999)

    Google Scholar 

  5. Chakraborty, U.K., Deb, K., Chakraborty, M.: Analysis of Selection Algorithms: A Markov Chain Approach. Evolutionary Computation 4(2), 133–167 (1997)

    Article  Google Scholar 

  6. Gorges-Schleuter, M.: An Analysis of Local Selection in Evolution Strategies. In: Banzhaf, W., Daida, J., Eiben, A.E., Garzon, M.H., Honavar, V., Jakiela, M., Smith, R.E. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference, Orlando, Florida, USA, vol. 1, pp. 847–854. Morgan Kaufmann (July 1999)

    Google Scholar 

  7. Rudolph, G.: Takeover Times in Spatially Structured Populations: Array and Ring. In: Lai, K.K., Katai, O., Gen, M., Lin, B. (eds.) 2nd Asia-Pacific Conference on Genetic Algorithms and Applications, pp. 144–151. Global-Link Publishing (2000)

    Google Scholar 

  8. Cantú-Paz, E.: Migration, Selection Pressure, and Superlinear Speedups. In: Efficient and Accurate Parallel Genetic Algorithms, pp. 97–120. Kluwer (2000)

    Google Scholar 

  9. Giacobini, M., Tomassini, M., Tettamanzi, A.G.B.: Modeling Selection Intensity for Linear Cellular Evolutionary Algorithms. In: Liardet, P., Collet, P., Fonlupt, C., Lutton, E., Schoenauer, M. (eds.) EA 2003. LNCS, vol. 2936, pp. 345–356. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  10. Forbes, C., Evans, M., Hastings, N., Peacock, B.: Rayleigh Distribution. In: Statistical Distributions. John Wiley & Son (2010)

    Google Scholar 

  11. Osorio, K., Luque, G., Alba, E.: Distributed Evolutionary Algorithms with Adaptive Migration Period. In: 2011 11th International Conference on Intelligent Systems Design and Applications (ISDA), pp. 259–264 (November 2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Luque, G., Alba, E. (2012). Analyzing the Behaviour of Population-Based Algorithms Using Rayleigh Distribution. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds) Parallel Problem Solving from Nature - PPSN XII. PPSN 2012. Lecture Notes in Computer Science, vol 7491. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32937-1_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32937-1_42

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32936-4

  • Online ISBN: 978-3-642-32937-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics