Abstract
In this paper we address model selection in Estimation of Distribution Algorithms (EDAs) based on variables trasformations. Instead of the classic approach based on the choice of a statistical model able to represent the interactions among the variables in the problem, we propose to learn a transformation of the variables before the estimation of the parameters of a fixed model in the transformed space. The choice of a proper transformation corresponds to the identification of a model for the selected sample able to implicitly capture higher-order correlations. We apply this paradigm to EDAs and present the novel Function Composition Algorithms (FCAs), based on composition of transformation functions, namely I-FCA and Chain-FCA, which make use of fixed low-dimensional models in the transformed space, yet being able to recover higher-order interactions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Baluja, S., Caruana, R.: Removing the genetics from the standard genetic algorithm. In: Machine learning: proceedings of the Twelfth International Conference on Machine Learning, pp. 38–46. Morgan Kaufmann (1995)
Brownlee, A.E.I., McCall, J.A.W., Shakya, S.K., Zhang, Q.: Structure Learning and Optimisation in a Markov Network Based Estimation of Distribution Algorithm. In: Chen, Y.-p. (ed.) Exploitation of Linkage Learning. ALO, vol. 3, pp. 45–69. Springer, Heidelberg (2010)
Cho, D., Zhang, B.: Evolutionary optimization by distribution estimation with mixtures of factor analyzers. In: Proceedings of the 2002 Congress on Evolutionary Computation, CEC 2002, vol. 2, pp. 1396–1401 (2002)
Corsano, E., Cucci, D., Malagò, L., Matteucci, M.: Implicit model selection based on variable transformations in estimation of distribution. In: Learning and Intelligent OptimizatioN Conference LION 6. LNCS, vol. 7219. Springer (to apppear, 2012)
De Bonet, J., Isbell, C., Viola, P.: Mimic: Finding optima by estimating probability densities. In: Advances in Neural Information Processing Systems, p. 424. The MIT Press (1996)
Echegoyen, C., Zhang, Q., Mendiburu, A., Santana, R., Lozano, J.: On the limits of effectiveness in estimation of distribution algorithms. In: 2011 IEEE Congress on Evolutionary Computation (CEC), pp. 1573–1580 (June 2011)
Grosset, L., LeRiche, R., Haftka, R.: A double-distribution statistical algorithm for composite laminate optimization. Structural and Multidisciplinary Optimization 31, 49–59 (2006)
Harik, G.: Linkage learning via probabilistic modeling in the eCGA, 1999. Harik, G. R (1999); Linkage Learning via Probabilistic Modeling in the ECGA (IlliGAL Report No. 99010). University of Illinois at Urbana-Champaign
Hohfeld, M., Rudolph, G.: Towards a theory of population-based incremental learning. In: Proceedings of the 4th IEEE Conference on Evolutionary Computation, pp. 1–5. IEEE Press (1997)
Malagò, L., Matteucci, M., Pistone, G.: Towards the geometry of estimation of distribution algorithms based on the exponential family. In: Proceedings of the 11th Workshop on Foundations of Genetic Algorithms, FOGA 2011, pp. 230–242. ACM, New York (2011)
Mühlenbein, H., Mahnig, T.: Mathematical analysis of evolutionary algorithms. In: Essays and Surveys in Metaheuristics, Operations Research/Computer Science Interface Series, pp. 525–556. Kluwer Academic Publishers (2002)
Pelikan, M., Goldberg, D.: Hierarchical Bayesian Optimization Algorithm. In: Pelikan, M., Sastry, K., Cant Paz, E. (eds.) Scalable Optimization via Probabilistic Modeling. SCI, vol. 33, pp. 63–90. Springer, Heidelberg (2006)
Shakya, S., Brownlee, A., McCall, J., Fournier, F., Owusu, G.: A fully multivariate DEUM algorithm. In: IEEE Congress on Evolutionary Computation (2009)
Thierens, D.: The Linkage Tree Genetic Algorithm. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN XI. LNCS, vol. 6238, pp. 264–273. Springer, Heidelberg (2010)
Toussaint, M.: Compact Genetic Codes as a Search Strategy of Evolutionary Processes. In: Wright, A.H., Vose, M.D., De Jong, K.A., Schmitt, L.M. (eds.) FOGA 2005. LNCS, vol. 3469, pp. 75–94. Springer, Heidelberg (2005)
Zhang, Q.: On stability of fixed points of limit models of univariate marginal distribution algorithm and factorized distribution algorithm. IEEE Transactions on Evolutionary Computation 8(1), 80–93 (2004)
Zhang, Q., Allinson, N., Yin, H.: Population optimization algorithm based on ica. In: 2000 IEEE Symposium on Combinations of Evolutionary Computation and Neural Networks, pp. 33–36 (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Cucci, D., Malagò, L., Matteucci, M. (2012). Variable Transformations in Estimation of Distribution Algorithms. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds) Parallel Problem Solving from Nature - PPSN XII. PPSN 2012. Lecture Notes in Computer Science, vol 7491. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32937-1_43
Download citation
DOI: https://doi.org/10.1007/978-3-642-32937-1_43
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-32936-4
Online ISBN: 978-3-642-32937-1
eBook Packages: Computer ScienceComputer Science (R0)