Abstract
Most of previous genetic algorithms for solving graph problems have used vertex-based encoding. In this paper, we introduce spanning tree-based encoding instead of vertex-based encoding for the well-known MAX CUT problem. We propose a new genetic algorithm based on this new type of encoding. We conducted experiments on benchmark graphs and could obtain performance improvement on sparse graphs, which appear in real-world applications such as social networks and systems biology, when the proposed methods are compared with ones using vertex-based encoding.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Kim, Y.-H., Kwon, Y.-K., Moon, B.-R.: Problem-independent Schema Synthesis for Genetic Algorithms. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2723, pp. 1112–1122. Springer, Heidelberg (2003)
Kim, Y.-H.: Linear transformation in pseudo-Boolean functions. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 1117–1118 (2008)
Kim, Y.-H., Yoon, Y.: Effect of changing the basis in genetic algorithms using binary encoding. KSII Transactions on Internet and Information Systems 2(4), 184–193 (2008)
Kim, Y.-H., Yoon, Y.: Representation and recombination over nonsingular binary matrices. In: Proceedings of the World Summit on Genetic and Evolutionary Computation, pp. 855–858 (2009)
Alpert, C.J., Kahng, A.B.: Recent directions in netlist partitioning: a survey. Integration, the VLSI Journal 19(1-2), 1–81 (1995)
Bui, T.N., Jones, C.: Finding good approximate vertex and edge partitions is NP-hard. Information Processing Letters 42(3), 153–159 (1992)
Clark, L.H., Shahrokhi, F., Székely, L.A.: A linear time algorithm for graph partition problems. Information Processing Letters 42(1), 19–24 (1992)
Feige, U., Karpinski, M., Langberg, M.: A note on approximating Max-Bisection on regular graphs. Information Processing Letters 79(4), 181–188 (2001)
Fjällström, P.O.: Algorithms for graph partitioning: a survey. Linkoping Electronic Articles in Computer and Information Science 3 (1998)
Hagen, L., Kahng, A.B.: New spectral methods for ratio cut partitioning and clustering. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 11(9), 1074–1085 (1992)
Kim, Y.-H., Moon, B.-R.: Lock-gain based graph partitioning. Journal of Heuristics 10(1), 37–57 (2004)
Kučera, L.: Expected complexity of graph partitioning problems. Discrete Applied Mathematics 57(2-3), 193–212 (1995)
Powers, D.L.: Graph partitioning by eigenvectors. Linear Algebra and its Applications 101, 121–133 (1988)
Yan, J.-T., Hsiao, P.-Y.: A fuzzy clustering algorithm for graph bisection. Information Processing Letters 52(5), 259–263 (1994)
Antonio, S.M., Abraham, D., Juan, J.P., Raúl, C.: High-performance VNS for the max-cut problem using commodity graphics hardware. In: Proceedings of the 18th Mini Euro Conference on VNS (2005)
Cong, J., Labio, W.J., Shivakumar, N.: Multiway VLSI circuit partitioning based on dual net representation. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 15(4), 396–409 (1996)
Guattery, S., Miller, G.L.: On the quality of spectral separators. SIAM Journal on Matrix Analysis and Applications 19(3), 701–719 (1998)
Michel, J., Pellegrini, F., Roman, J.: Unstructured Graph Partitioning for Sparse Linear System Solving. In: Lüling, R., Bilardi, G., Ferreira, A., Rolim, J.D.P. (eds.) IRREGULAR 1997. LNCS, vol. 1253, pp. 273–286. Springer, Heidelberg (1997)
Venkatakrishnan, V.: Parallel computation of Ax and ATx. International Journal of High Speed Computing 6, 325–342 (1994)
Armbruster, M., Fügenschuh, M., Helmberg, C., Jetchev, N., Martin, A.: Hybrid Genetic Algorithm Within Branch-and-Cut for the Minimum Graph Bisection Problem. In: Gottlieb, J., Raidl, G.R. (eds.) EvoCOP 2006. LNCS, vol. 3906, pp. 1–12. Springer, Heidelberg (2006)
Yoon, Y., Kim, Y.-H., Moon, B.-R.: A note on edge-based graph partitioning and its linear algebraic structure. Journal of Mathematical Modelling and Algorithms 10(3), 269–276 (2011)
Biggs, N.: Algebraic Graph Theory, 2nd edn. Cambridge University Press (1994)
Diestel, R.: Graph Theory, 3rd edn. Graduate Texts in Mathematics, vol. 173. Springer, Heidelberg (2005)
Ford Jr., L.R., Fulkerson, D.R.: Flows in Networks. Princeton University Press (1962)
Karp, R.M.: Reducibility Among Combinatorial Problems, pp. 85–103. Plenum Press, New York (1972)
Garey, M.R., Johnson, D.S., Stockmeyer, L.J.: Some simplified NP-complete graph problems. Theoretical Computer Science 1(3), 237–267 (1976)
Sahni, S., Gonzalez, T.: P-complete approximation problems. Journal of the ACM 23(3), 555–565 (1976)
Vitányi, P.M.B.: How well can a graph be n-colored? Discrete Mathematics 34(1), 69–80 (1981)
Poljak, S., Tuza, Z.: A polynomial algorithm for constructing a large bipartite subgraph, with an application to a satisfiability problem. Canadian Journal of Mathematics 34, 519–524 (1982)
Haglin, D.J., Venkatesan, S.M.: Approximation and intractability results for the maximum cut problem and its variants. IEEE Trans. on Computer 40, 110–113 (1991)
Hofmeister, T., Lefmann, H.: A combinatorial design approach to maxcut. In: Proceedings of the 13th Symposium on Theoretical Aspects of Computer Science (1995)
Goemans, M.X., Williamson, D.P.: Improved Approximation Algorithms for Maximum Cut and Satisfiability Problems Using Semidefinite Programming. Journal of the Association for Computing Machinery 42(6), 1115–1145 (1995)
Homer, S., Peinado, M.: Design and Performance of Parallel and Distributed Approximation Algorithms for Maxcut. Journal of Parallel and Distributed Computing 46, 48–61 (1997)
Kirkpatrick, S., Gelatt Jr., C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)
Kim, S.-H., Kim, Y.-H., Moon, B.-R.: A hybrid genetic algorithm for the MAX CUT problem. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 416–423 (2001)
Barahona, F., Grotschel, M., Junger, M., Reinelt, G.: An application of combinatorial optimization to statistical physics and circuit layout design. Operational Research 36, 493–513 (1984)
Pinter, R.Y.: Optimal layer assignment for interconnect. Journal of VLSI Computing Systems 1, 123–137 (1984)
Poljak, S., Tuza, Z.: Maximum cuts and largest bipartite subgraphs, vol. 20. American Mathematical Society (1993)
Boost Library, http://boost.org
Open Beagle, http://beagle.gel.ulaval.ca
Bui, T.N., Moon, B.R.: Genetic algorithm and graph partitioning. IEEE Transactions on Computers 45(7), 841–855 (1996)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Seo, K., Hyun, S., Kim, YH. (2012). A Spanning Tree-Based Encoding of the MAX CUT Problem for Evolutionary Search. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds) Parallel Problem Solving from Nature - PPSN XII. PPSN 2012. Lecture Notes in Computer Science, vol 7491. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32937-1_51
Download citation
DOI: https://doi.org/10.1007/978-3-642-32937-1_51
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-32936-4
Online ISBN: 978-3-642-32937-1
eBook Packages: Computer ScienceComputer Science (R0)