Skip to main content

A Spanning Tree-Based Encoding of the MAX CUT Problem for Evolutionary Search

  • Conference paper
Parallel Problem Solving from Nature - PPSN XII (PPSN 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7491))

Included in the following conference series:

  • 1989 Accesses

Abstract

Most of previous genetic algorithms for solving graph problems have used vertex-based encoding. In this paper, we introduce spanning tree-based encoding instead of vertex-based encoding for the well-known MAX CUT problem. We propose a new genetic algorithm based on this new type of encoding. We conducted experiments on benchmark graphs and could obtain performance improvement on sparse graphs, which appear in real-world applications such as social networks and systems biology, when the proposed methods are compared with ones using vertex-based encoding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kim, Y.-H., Kwon, Y.-K., Moon, B.-R.: Problem-independent Schema Synthesis for Genetic Algorithms. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2723, pp. 1112–1122. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  2. Kim, Y.-H.: Linear transformation in pseudo-Boolean functions. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 1117–1118 (2008)

    Google Scholar 

  3. Kim, Y.-H., Yoon, Y.: Effect of changing the basis in genetic algorithms using binary encoding. KSII Transactions on Internet and Information Systems 2(4), 184–193 (2008)

    Article  Google Scholar 

  4. Kim, Y.-H., Yoon, Y.: Representation and recombination over nonsingular binary matrices. In: Proceedings of the World Summit on Genetic and Evolutionary Computation, pp. 855–858 (2009)

    Google Scholar 

  5. Alpert, C.J., Kahng, A.B.: Recent directions in netlist partitioning: a survey. Integration, the VLSI Journal 19(1-2), 1–81 (1995)

    Article  MATH  Google Scholar 

  6. Bui, T.N., Jones, C.: Finding good approximate vertex and edge partitions is NP-hard. Information Processing Letters 42(3), 153–159 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  7. Clark, L.H., Shahrokhi, F., Székely, L.A.: A linear time algorithm for graph partition problems. Information Processing Letters 42(1), 19–24 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  8. Feige, U., Karpinski, M., Langberg, M.: A note on approximating Max-Bisection on regular graphs. Information Processing Letters 79(4), 181–188 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fjällström, P.O.: Algorithms for graph partitioning: a survey. Linkoping Electronic Articles in Computer and Information Science 3 (1998)

    Google Scholar 

  10. Hagen, L., Kahng, A.B.: New spectral methods for ratio cut partitioning and clustering. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 11(9), 1074–1085 (1992)

    Article  Google Scholar 

  11. Kim, Y.-H., Moon, B.-R.: Lock-gain based graph partitioning. Journal of Heuristics 10(1), 37–57 (2004)

    Article  MATH  Google Scholar 

  12. Kučera, L.: Expected complexity of graph partitioning problems. Discrete Applied Mathematics 57(2-3), 193–212 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  13. Powers, D.L.: Graph partitioning by eigenvectors. Linear Algebra and its Applications 101, 121–133 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  14. Yan, J.-T., Hsiao, P.-Y.: A fuzzy clustering algorithm for graph bisection. Information Processing Letters 52(5), 259–263 (1994)

    Article  MathSciNet  Google Scholar 

  15. Antonio, S.M., Abraham, D., Juan, J.P., Raúl, C.: High-performance VNS for the max-cut problem using commodity graphics hardware. In: Proceedings of the 18th Mini Euro Conference on VNS (2005)

    Google Scholar 

  16. Cong, J., Labio, W.J., Shivakumar, N.: Multiway VLSI circuit partitioning based on dual net representation. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 15(4), 396–409 (1996)

    Article  Google Scholar 

  17. Guattery, S., Miller, G.L.: On the quality of spectral separators. SIAM Journal on Matrix Analysis and Applications 19(3), 701–719 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  18. Michel, J., Pellegrini, F., Roman, J.: Unstructured Graph Partitioning for Sparse Linear System Solving. In: Lüling, R., Bilardi, G., Ferreira, A., Rolim, J.D.P. (eds.) IRREGULAR 1997. LNCS, vol. 1253, pp. 273–286. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  19. Venkatakrishnan, V.: Parallel computation of Ax and ATx. International Journal of High Speed Computing 6, 325–342 (1994)

    Article  Google Scholar 

  20. Armbruster, M., Fügenschuh, M., Helmberg, C., Jetchev, N., Martin, A.: Hybrid Genetic Algorithm Within Branch-and-Cut for the Minimum Graph Bisection Problem. In: Gottlieb, J., Raidl, G.R. (eds.) EvoCOP 2006. LNCS, vol. 3906, pp. 1–12. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  21. Yoon, Y., Kim, Y.-H., Moon, B.-R.: A note on edge-based graph partitioning and its linear algebraic structure. Journal of Mathematical Modelling and Algorithms 10(3), 269–276 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Biggs, N.: Algebraic Graph Theory, 2nd edn. Cambridge University Press (1994)

    Google Scholar 

  23. Diestel, R.: Graph Theory, 3rd edn. Graduate Texts in Mathematics, vol. 173. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  24. Ford Jr., L.R., Fulkerson, D.R.: Flows in Networks. Princeton University Press (1962)

    Google Scholar 

  25. Karp, R.M.: Reducibility Among Combinatorial Problems, pp. 85–103. Plenum Press, New York (1972)

    Google Scholar 

  26. Garey, M.R., Johnson, D.S., Stockmeyer, L.J.: Some simplified NP-complete graph problems. Theoretical Computer Science 1(3), 237–267 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  27. Sahni, S., Gonzalez, T.: P-complete approximation problems. Journal of the ACM 23(3), 555–565 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  28. Vitányi, P.M.B.: How well can a graph be n-colored? Discrete Mathematics 34(1), 69–80 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  29. Poljak, S., Tuza, Z.: A polynomial algorithm for constructing a large bipartite subgraph, with an application to a satisfiability problem. Canadian Journal of Mathematics 34, 519–524 (1982)

    Article  MATH  Google Scholar 

  30. Haglin, D.J., Venkatesan, S.M.: Approximation and intractability results for the maximum cut problem and its variants. IEEE Trans. on Computer 40, 110–113 (1991)

    Article  MathSciNet  Google Scholar 

  31. Hofmeister, T., Lefmann, H.: A combinatorial design approach to maxcut. In: Proceedings of the 13th Symposium on Theoretical Aspects of Computer Science (1995)

    Google Scholar 

  32. Goemans, M.X., Williamson, D.P.: Improved Approximation Algorithms for Maximum Cut and Satisfiability Problems Using Semidefinite Programming. Journal of the Association for Computing Machinery 42(6), 1115–1145 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  33. Homer, S., Peinado, M.: Design and Performance of Parallel and Distributed Approximation Algorithms for Maxcut. Journal of Parallel and Distributed Computing 46, 48–61 (1997)

    Article  Google Scholar 

  34. Kirkpatrick, S., Gelatt Jr., C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  35. Kim, S.-H., Kim, Y.-H., Moon, B.-R.: A hybrid genetic algorithm for the MAX CUT problem. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 416–423 (2001)

    Google Scholar 

  36. Barahona, F., Grotschel, M., Junger, M., Reinelt, G.: An application of combinatorial optimization to statistical physics and circuit layout design. Operational Research 36, 493–513 (1984)

    Google Scholar 

  37. Pinter, R.Y.: Optimal layer assignment for interconnect. Journal of VLSI Computing Systems 1, 123–137 (1984)

    MATH  Google Scholar 

  38. Poljak, S., Tuza, Z.: Maximum cuts and largest bipartite subgraphs, vol. 20. American Mathematical Society (1993)

    Google Scholar 

  39. Boost Library, http://boost.org

  40. Open Beagle, http://beagle.gel.ulaval.ca

  41. Bui, T.N., Moon, B.R.: Genetic algorithm and graph partitioning. IEEE Transactions on Computers 45(7), 841–855 (1996)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Seo, K., Hyun, S., Kim, YH. (2012). A Spanning Tree-Based Encoding of the MAX CUT Problem for Evolutionary Search. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds) Parallel Problem Solving from Nature - PPSN XII. PPSN 2012. Lecture Notes in Computer Science, vol 7491. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32937-1_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32937-1_51

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32936-4

  • Online ISBN: 978-3-642-32937-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics