Skip to main content

On Algorithm-Dependent Boundary Case Identification for Problem Classes

  • Conference paper
Parallel Problem Solving from Nature - PPSN XII (PPSN 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7491))

Included in the following conference series:

Abstract

Running time analysis of metaheuristic search algorithms has attracted a lot of attention. When studying a metaheuristic algorithm over a problem class, a natural question is what are the easiest and the hardest cases of the problem class. The answer can be helpful for simplifying the analysis of an algorithm over a problem class as well as understanding the strength and weakness of an algorithm. This algorithm-dependent boundary case identification problem is investigated in this paper. We derive a general theorem for the identification, and apply it to a case that the (1+1)-EA with mutation probability less than 0.5 is used over the problem class of pseudo-Boolean functions with a unique global optimum.

This research was supported by the National Science Foundation of China (60903103, 61105043)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Auger, A., Doerr, B.: Theory of Randomized Search Heuristics: Foundations and Recent Developments. World Scientific, Singapore (2011)

    Book  MATH  Google Scholar 

  2. Bäck, T.: Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Programming, Genetic Algorithms. Oxford University Press, Oxford (1996)

    MATH  Google Scholar 

  3. Doerr, B., Johannsen, D., Winzen, C.: Drift analysis and linear functions revisited. In: Proceedings of the 2010 IEEE Congress on Evolutionary Computation, Barcelona, Spain, pp. 1–8 (2010)

    Google Scholar 

  4. Droste, S., Jansen, T., Wegener, I.: A rigorous complexity analysis of the (1+1) evolutionary algorithm for linear functions with Boolean inputs. Evolutionary Computation 6(2), 185–196 (1998)

    Article  Google Scholar 

  5. Droste, S., Jansen, T., Wegener, I.: On the analysis of the (1+1) evolutionary algorithm. Theoretical Computer Science 276(1-2), 51–81 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fournier, H., Teytaud, O.: Lower bounds for comparison based evolution strategies using VC-dimension and sign patterns. Algorithmica 59(3), 387–408 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. He, J., Yao, X.: Drift analysis and average time complexity of evolutionary algorithms. Artificial Intelligence 127(1), 57–85 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. He, J., Yao, X.: A study of drift analysis for estimating computation time of evolutionary algorithms. Natural Computing 3(1), 21–35 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Jägersküpper, J.: A blend of Markov-chain and drift analysis. In: Proceedings of the 10th International Conference on Parallel Problem Solving from Nature, Dortmund, Germany, pp. 41–51 (2008)

    Google Scholar 

  10. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the 1995 IEEE International Conference on Neural Networks, Perth, Australia, pp. 1942–1948 (1995)

    Google Scholar 

  11. Kirkpatrick, S.: Optimization by simulated annealing: Quantitative studies. Journal of Statistical Physics 34(5), 975–986 (1984)

    Article  MathSciNet  Google Scholar 

  12. Neumann, F., Witt, C.: Bioinspired Computation in Combinatorial Optimization: Algorithms and Their Computational Complexity. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  13. Witt, C.: Optimizing linear functions with randomized search heuristics-The robustness of mutation. In: Proceedings of the 29th Symposium on Theoretical Aspects of Computer Science, Paris, France, pp. 420–431 (2012)

    Google Scholar 

  14. Wolpert, D., Macready, W.: No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation 1(1), 67–82 (1997)

    Article  Google Scholar 

  15. Yu, Y., Qian, C., Zhou, Z.-H.: Towards Analyzing Recombination Operators in Evolutionary Search. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN XI. LNCS, vol. 6238, pp. 144–153. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  16. Yu, Y., Qian, C., Zhou, Z.-H.: Towards analyzing crossover operators in evolutionary search via general Markov chain switching theorem. CORR abs/1111.0907 (2011)

    Google Scholar 

  17. Yu, Y., Zhou, Z.-H.: A new approach to estimating the expected first hitting time of evolutionary algorithms. Artificial Intelligence 172(15), 1809–1832 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Qian, C., Yu, Y., Zhou, ZH. (2012). On Algorithm-Dependent Boundary Case Identification for Problem Classes. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds) Parallel Problem Solving from Nature - PPSN XII. PPSN 2012. Lecture Notes in Computer Science, vol 7491. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32937-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32937-1_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32936-4

  • Online ISBN: 978-3-642-32937-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics