Abstract
The CSA-ES is an Evolution Strategy with Cumulative Step size Adaptation, where the step size is adapted measuring the length of a so-called cumulative path. The cumulative path is a combination of the previous steps realized by the algorithm, where the importance of each step decreases with time. This article studies the CSA-ES on composites of strictly increasing functions with affine linear functions through the investigation of its underlying Markov chains. Rigorous results on the change and the variation of the step size are derived with and without cumulation. The step-size diverges geometrically fast in most cases. Furthermore, the influence of the cumulation parameter is studied.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Arnold, D.V., Beyer, H.-G.: Performance analysis of evolutionary optimization with cumulative step length adaptation. IEEE Transactions on Automatic Control 49(4), 617–622 (2004)
Arnold, D.V., Beyer, H.-G.: On the behaviour of evolution strategies optimising cigar functions. Evolutionary Computation 18(4), 661–682 (2010)
Arnold, D.V.: Cumulative Step Length Adaptation on Ridge Functions. In: Runarsson, T.P., Beyer, H.-G., Burke, E.K., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds.) PPSN IX. LNCS, vol. 4193, pp. 11–20. Springer, Heidelberg (2006)
Arnold, D.V.: On the behaviour of the (1,λ)-es for a simple constrained problem. In: Foundations of Genetic Algorithms FOGA 2011, pp. 15–24. ACM (2011)
Arnold, D.V., Beyer, H.-G.: Random Dynamics Optimum Tracking with Evolution Strategies. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN VII. LNCS, vol. 2439, pp. 3–12. Springer, Heidelberg (2002)
Arnold, D.V., Beyer, H.G.: Optimum tracking with evolution strategies. Evolutionary Computation 14(3), 291–308 (2006)
Arnold, D.V., Beyer, H.G.: Evolution strategies with cumulative step length adaptation on the noisy parabolic ridge. Natural Computing 7(4), 555–587 (2008)
Chotard, A., Auger, A., Hansen, N.: Cumulative step-size adaptation on linear functions: Technical report (2012), http://hal.inria.fr/hal-00704903
Hansen, N.: An analysis of mutative σ-self-adaptation on linear fitness functions. Evolutionary Computation 14(3), 255–275 (2006)
Hansen, N., Ostermeier, A.: Adapting arbitrary normal mutation distributions in evolution strategies: The covariance matrix adaptation. In: International Conference on Evolutionary Computation, pp. 312–317 (1996)
Meyn, S.P., Tweedie, R.L.: Markov chains and stochastic stability, 2nd edn. Cambridge University Press (1993)
Ostermeier, A., Gawelczyk, A., Hansen, N.: Step-size Adaptation Based on Non-local Use of Selection Information. In: Davidor, Y., Männer, R., Schwefel, H.-P. (eds.) PPSN III. LNCS, vol. 866, pp. 189–198. Springer, Heidelberg (1994)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Chotard, A., Auger, A., Hansen, N. (2012). Cumulative Step-Size Adaptation on Linear Functions. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds) Parallel Problem Solving from Nature - PPSN XII. PPSN 2012. Lecture Notes in Computer Science, vol 7491. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32937-1_8
Download citation
DOI: https://doi.org/10.1007/978-3-642-32937-1_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-32936-4
Online ISBN: 978-3-642-32937-1
eBook Packages: Computer ScienceComputer Science (R0)