Abstract
Strategy Logic (Sl, for short) has been recently introduced by Mogavero, Murano, and Vardi as a formalism for reasoning explicitly about strategies, as first-order objects, in multi-agent concurrent games. This logic turns out to be very powerful, strictly subsuming all major previously studied modal logics for strategic reasoning, including Atl, Atl*, and the like. The price that one has to pay for the expressiveness of Sl is the lack of important model-theoretic properties and an increased complexity of decision problems. In particular, Sl does not have the bounded-tree model property and the related satisfiability problem is highly undecidable while for Atl* it is 2ExpTime-complete. An obvious question that arises is then what makes Atl* decidable. Understanding this should enable us to identify decidable fragments of Sl. We focus, in this work, on the limitation of Atl* to allow only one temporal goal for each strategic assertion and study the fragment of Sl with the same restriction. Specifically, we introduce and study the syntactic fragment One-Goal Strategy Logic (Sl[1g], for short), which consists of formulas in prenex normal form having a single temporal goal at a time for every strategy quantification of agents. We show that Sl[1g] is strictly more expressive than Atl*. Our main result is that Sl[1g] has the bounded tree-model property and its satisfiability problem is 2ExpTime-complete, as it is for Atl*.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Albert, M.H., Nowakowski, R.J., Wolfe, D.: Lessons in Play: An Introduction to Combinatorial Game Theory. AK Peters (2007)
Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-Time Temporal Logic. JACM 49(5), 672–713 (2002)
Chatterjee, K., Henzinger, T.A., Piterman, N.: Strategy Logic. IC 208(6), 677–693 (2010)
Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press (2002)
Da Costa, A., Laroussinie, F., Markey, N.: ATL with Strategy Contexts: Expressiveness and Model Checking. In: FSTTCS 2010. LIPIcs, vol. 8, pp. 120–132 (2010)
Emerson, E.A., Halpern, J.Y.: “Sometimes” and “Not Never” Revisited: On Branching Versus Linear Time. JACM 33(1), 151–178 (1986)
Finkbeiner, B., Schewe, S.: Coordination Logic. In: Dawar, A., Veith, H. (eds.) CSL 2010. LNCS, vol. 6247, pp. 305–319. Springer, Heidelberg (2010)
Fisman, D., Kupferman, O., Lustig, Y.: Rational Synthesis. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 190–204. Springer, Heidelberg (2010)
Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games. LNCS, vol. 2500. Springer, Heidelberg (2002)
Hodges, W.: Model theory. Encyclopedia of Mathematics and its Applications. Cambridge University Press (1993)
Jamroga, W., van der Hoek, W.: Agents that Know How to Play. FI 63(2-3), 185–219 (2004)
Kozen, D.: Results on the Propositional mu-Calculus. TCS 27(3), 333–354 (1983)
Kupferman, O., Vardi, M.Y., Wolper, P.: An Automata Theoretic Approach to Branching-Time Model Checking. JACM 47(2), 312–360 (2000)
Kupferman, O., Vardi, M.Y., Wolper, P.: Module Checking. IC 164(2), 322–344 (2001)
Martin, A.D.: Borel Determinacy. AM 102(2), 363–371 (1975)
Mogavero, F., Murano, A., Perelli, G., Vardi, M.Y.: Reasoning About Strategies: On the Model-Checking Problem. Technical Report 1112.6275, arXiv (December 2011)
Mogavero, F., Murano, A., Perelli, G., Vardi, M.Y.: A Decidable Fragment of Strategy Logic. Technical Report 1202.1309, arXiv (February 2012)
Mogavero, F., Murano, A., Vardi, M.Y.: Reasoning About Strategies. In: FSTTCS 2010. LIPIcs, vol. 8, pp. 133–144 (2010)
Mogavero, F., Murano, A., Vardi, M.Y.: Relentful Strategic Reasoning in Alternating-Time Temporal Logic. In: Clarke, E.M., Voronkov, A. (eds.) LPAR-16 2010. LNCS, vol. 6355, pp. 371–386. Springer, Heidelberg (2010)
Muller, D.E., Schupp, P.E.: Alternating Automata on Infinite Trees. TCS 54(2-3), 267–276 (1987)
Muller, D.E., Schupp, P.E.: Simulating Alternating Tree Automata by Nondeterministic Automata: New Results and New Proofs of Theorems of Rabin, McNaughton, and Safra. TCS 141(1-2), 69–107 (1995)
Pauly, M.: A Modal Logic for Coalitional Power in Games. JLC 12(1), 149–166 (2002)
Pinchinat, S.: A Generic Constructive Solution for Concurrent Games with Expressive Constraints on Strategies. In: Namjoshi, K.S., Yoneda, T., Higashino, T., Okamura, Y. (eds.) ATVA 2007. LNCS, vol. 4762, pp. 253–267. Springer, Heidelberg (2007)
Pnueli, A.: The Temporal Logic of Programs. In: FOCS 1977, pp. 46–57 (1977)
Rabin, M.O.: Decidability of Second-Order Theories and Automata on Infinite Trees. TAMS 141, 1–35 (1969)
Schewe, S.: ATL* Satisfiability Is 2EXPTIME-Complete. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 373–385. Springer, Heidelberg (2008)
Vardi, M.Y.: Why is Modal Logic So Robustly Decidable? In: DCFM 1996, pp. 149–184. American Mathematical Society (1996)
Vardi, M.Y., Wolper, P.: An Automata-Theoretic Approach to Automatic Program Verification. In: LICS 1986, pp. 332–344. IEEE Computer Society (1986)
Vardi, M.Y., Wolper, P.: Automata-Theoretic Techniques for Modal Logics of Programs. JCSS 32(2), 183–221 (1986)
Wang, F., Huang, C.-H., Yu, F.: A Temporal Logic for the Interaction of Strategies. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011 – Concurrency Theory. LNCS, vol. 6901, pp. 466–481. Springer, Heidelberg (2011)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Mogavero, F., Murano, A., Perelli, G., Vardi, M.Y. (2012). What Makes Atl* Decidable? A Decidable Fragment of Strategy Logic. In: Koutny, M., Ulidowski, I. (eds) CONCUR 2012 – Concurrency Theory. CONCUR 2012. Lecture Notes in Computer Science, vol 7454. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32940-1_15
Download citation
DOI: https://doi.org/10.1007/978-3-642-32940-1_15
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-32939-5
Online ISBN: 978-3-642-32940-1
eBook Packages: Computer ScienceComputer Science (R0)