Abstract
We study enumeration problems using probabilistic methods, with application to verification problems. We consider the enumeration of monomials of a polynomial given as a black box, and the enumeration of discrete points which separate two polytopes in a space of dimension n, using a random walk which provides witnesses if the volume of the difference of the polytopes is large enough. The first method allows to enumerate all words of a given size which distinguish two probabilistic automata with a polynomial delay. The second method enumerates words which ε-distinguish two nondeterministic finite automata.We also enumerate strategies which ε-distinguish two Markov Decision Processes in time polynomial in the dimension of their statistical representation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Baier, C.: Polynomial Time Algorithms for Testing Probabilistic Bisimulation and Simulation. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 38–49. Springer, Heidelberg (1996)
Brieden, A.: Geometric optimization problems likely not contained in apx. Discrete and Computational Geometry 28(2), 201–209 (2002)
Broder, A.: On the resemblance and containment of documents. In: SEQUENCES 1997: Proceedings of the Compression and Complexity of Sequences (1997)
Cormode, G., Muthukrishnan, S.: The string edit distance matching problem with moves. In: Proceedings of the ACM-SIAM Symposium on Discrete Algorithms, pp. 667–676. Society for Industrial and Applied Mathematics (2002)
de Rougemont, M., Tracol, M.: Statistic analysis for probabilistic processes. In: Proc. of the 24th Annual IEEE Symposium on Logic in Computer Science (LICS), pp. 299–308. IEEE Computer Society (2009)
Derman, C.: Finite State Markovian Decision Processes. Academic Press, Inc., Orlando (1970)
Desharnais, J., Gupta, V., Jagadeesan, R., Panangaden, P.: Metrics for labelled Markov processes. Theoretical Computer Science 318(3), 323–354 (2004)
Fischer, E., Magniez, F., de Rougemont, M.: Approximate satisfiability and equivalence. SIAM J. Comput. 39(6), 2251–2281 (2010)
Gat, E., Goldwasser, S.: Probabilistic search algorithms with unique answers and their cryptographic applications. Electronic Colloquium on Computational Complexity (ECCC) 18, 136 (2011)
Kannan, R., Lovász, L., Montenegro, R.: Blocking conductance and mixing in random walks. Comb. Probab. Comput. 15, 541–570 (2006)
Kannan, R., Lovász, L., Simonovits, M.: Random walks and an o*(n5) volume algorithm for convex bodies. Random Structures and Algorithms 11(1), 1–50 (1997)
Kiefer, S., Murawski, A.S., Ouaknine, J., Wachter, B., Worrell, J.: Language Equivalence for Probabilistic Automata. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 526–540. Springer, Heidelberg (2011)
Klivans, A.R., Spielman, D.: Randomness efficient identity testing of multivariate polynomials. In: Proceedings of the 33rd Annual ACM Symposium on Theory of Computing, pp. 216–223. ACM, New York (2001)
Lovász, L., Simonovits, M.: Random walks in a convex body and an improved volume algorithm. Random Structures & Algorithms 4(4), 359–412 (1993)
Ornstein, D., Weiss, B.: How sampling reveals a process. Annals of Probability 18, 905–930 (1990)
Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Programming. John Wiley & Sons (1994)
Rabin, M.O.: Probabilistic automata. Information and Control 6(3), 230–245 (1963)
Schwartz, J.T.: Fast probabilistic algorithms for verification of polynomial identities. Journal of the ACM (JACM) 27(4), 717 (1980)
Simonovits, M.: How to compute the volume in high dimension? Mathematical Programming 97(1), 337–374 (2003)
Strozecki, Y.: Enumeration of the Monomials of a Polynomial and Related Complexity Classes. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp. 629–640. Springer, Heidelberg (2010)
Tzeng, W.G.: A polynomial-time algorithm for the equivalence of probabilistic automata. SIAM Journal on Computing 21, 216 (1992)
Zippel, R.: Probabilistic Algorithms for Sparse Polynomials. In: Ng, K.W. (ed.) EUROSAM 1979 and ISSAC 1979. LNCS, vol. 72, pp. 216–226. Springer, Heidelberg (1979)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Peyronnet, S., De Rougemont, M., Strozecki, Y. (2012). Approximate Verification and Enumeration Problems. In: Roychoudhury, A., D’Souza, M. (eds) Theoretical Aspects of Computing – ICTAC 2012. ICTAC 2012. Lecture Notes in Computer Science, vol 7521. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32943-2_18
Download citation
DOI: https://doi.org/10.1007/978-3-642-32943-2_18
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-32942-5
Online ISBN: 978-3-642-32943-2
eBook Packages: Computer ScienceComputer Science (R0)