Abstract
A simple linear loop is a simple while loop with linear assignments and linear loop guards. If a simple linear loop has only two program variables, we give a complete algorithm for computing the set of all the inputs on which the loop does not terminate. For the case of more program variables, we show that the non-termination set cannot be described by Tarski formulae in general.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Braverman, M.: Termination of Integer Linear Programs. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 372–385. Springer, Heidelberg (2006)
Chen, Y., Xia, B., Yang, L., Zhan, N., Zhou, C.: Discovering Non-linear Ranking Functions by Solving Semi-algebraic Systems. In: Jones, C.B., Liu, Z., Woodcock, J. (eds.) ICTAC 2007. LNCS, vol. 4711, pp. 34–49. Springer, Heidelberg (2007)
Colón, M.A., Sipma, H.B.: Synthesis of Linear Ranking Functions. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, pp. 67–81. Springer, Heidelberg (2001)
Dams, D., Gerth, R., Grumberg, O.: A heuristic for the automatic generation of ranking functions. In: Workshop on Advances in Verification (WAVe 2000), pp. 1–8 (2000)
Lee, C.S., Jones, N.D., Ben-Amram, A.M.: The size-change principle for program termination. In: POPL, pp. 81–92 (2001)
Podelski, A., Rybalchenko, A.: A Complete Method for the Synthesis of Linear Ranking Functions. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 239–251. Springer, Heidelberg (2004)
Tiwari, A.: Termination of Linear Programs. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 70–82. Springer, Heidelberg (2004)
Xia, B., Zhang, Z.: Termination of linear programs with nonlinear constraints. Journal of Symbolic Computation 45, 1234–1249 (2010)
Xia, B., Yang, L., Zhan, N., Zhang, Z.: Symbolic decision procedure for termination of linear programs. Formal Aspects of Computing 23, 171–190 (2011)
Gupta, A., Henzinger, T., Majumdar, R., Rybalchenko, A., Xu, R.G.: Proving non-termination. In: POPL, pp. 147–158 (2008)
Gulwani, S., Srivastava, S., Venkatesan, R.: Program analysis as constraint solving. In: POPL, pp. 281–292 (2008)
Zhao, S., Chen, D.: Decidability Analysis on Termination Set of Loop Programs. In: The International Conference on Computer Science and Service System(CSSS), pp. 3124–3127 (2011)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Dai, L., Xia, B. (2012). Non-termination Sets of Simple Linear Loops. In: Roychoudhury, A., D’Souza, M. (eds) Theoretical Aspects of Computing – ICTAC 2012. ICTAC 2012. Lecture Notes in Computer Science, vol 7521. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32943-2_5
Download citation
DOI: https://doi.org/10.1007/978-3-642-32943-2_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-32942-5
Online ISBN: 978-3-642-32943-2
eBook Packages: Computer ScienceComputer Science (R0)