Skip to main content

Parallelization Strategies for Hybrid Metaheuristics Using a Single GPU and Multi-core Resources

  • Conference paper
Parallel Problem Solving from Nature - PPSN XII (PPSN 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7492))

Included in the following conference series:

Abstract

Hybrid metaheuristics are powerful methods for solving complex problems in science and industry. Nevertheless, the resolution time remains prohibitive when dealing with large problem instances. As a result, the use of GPU computing has been recognized as a major way to speed up the search process. However, most GPU-accelerated algorithms of the literature do not take benefits of all the available CPU cores. In this paper, we introduce a new guideline for the design and implementation of effective hybrid metaheuristics using heterogeneous resources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Talbi, E.G.: A taxonomy of hybrid metaheuristics. J. Heuristics 8(5), 541–564 (2002)

    Article  Google Scholar 

  2. Ryoo, S., Rodrigues, C.I., Stone, S.S., Stratton, J.A., Ueng, S.Z., Baghsorkhi, S.S., Mei, W., Hwu, W.: Program optimization carving for gpu computing. J. Parallel Distributed Computing 68(10), 1389–1401 (2008)

    Article  Google Scholar 

  3. Munawar, A., Wahib, M., Munetomo, M., Akama, K.: Hybrid of genetic algorithm and local search to solve max-sat problem using nvidia cuda framework. Genetic Programming and Evolvable Machines 10, 391–415 (2009)

    Article  Google Scholar 

  4. Tsutsui, S., Fujimoto, N.: Aco with tabu search on a gpu for solving qaps using move-cost adjusted thread assignment. In: Krasnogor, N., Lanzi, P.L. (eds.) GECCO, pp. 1547–1554. ACM (2011)

    Google Scholar 

  5. Luong, T.V., Melab, N., Talbi, E.G.: Parallel hybrid evolutionary algorithms on gpu. In: IEEE Congress on Evolutionary Computation, pp. 1–8 (2010)

    Google Scholar 

  6. Talbi, E.G.: Metaheuristics: From design to implementation. Wiley (2009)

    Google Scholar 

  7. Wong, M.L., Wong, T.T., Fok, K.L.: Parallel evolutionary algorithms on graphics processing unit. In: IEEE Congress on Evolutionary Computation, pp. 2286–2293 (2005)

    Google Scholar 

  8. Mussi, L., Cagnoni, S., Daolio, F.: Gpu-based road sign detection using particle swarm optimization. In: ISDA, pp. 152–157. IEEE Computer Society (2009)

    Google Scholar 

  9. Bai, H., OuYang, D., Li, X., He, L., Yu, H.: Max-min ant system on gpu with cuda. In: Proceedings of the 2009 Fourth International Conference on Innovative Computing, Information and Control, ICICIC 2009, pp. 801–804. IEEE Computer Society, Washington, DC (2009)

    Chapter  Google Scholar 

  10. Janiak, A., Janiak, W.A., Lichtenstein, M.: Tabu search on gpu. J. UCS 14(14), 2416–2426 (2008)

    Google Scholar 

  11. Zhu, W., Curry, J., Marquez, A.: Simd tabu search with graphics hardware acceleration on the quadratic assignment problem. International Journal of Production Research (2008)

    Google Scholar 

  12. Czapinski, M., Barnes, S.: Tabu search with two approaches to parallel flowshop evaluation on cuda platform. J. Parallel Distrib. Comput. 71(6), 802–811 (2011)

    Article  Google Scholar 

  13. Luong, T.V., Melab, N., Talbi, E.G.: Gpu computing for parallel local search metaheuristic algorithms. IEEE Transactions on Computers 99(preprints) (2011)

    Google Scholar 

  14. Taillard, E.D.: Fant: Fast ant system. Technical report (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Van Luong, T., Taillard, E., Melab, N., Talbi, EG. (2012). Parallelization Strategies for Hybrid Metaheuristics Using a Single GPU and Multi-core Resources. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds) Parallel Problem Solving from Nature - PPSN XII. PPSN 2012. Lecture Notes in Computer Science, vol 7492. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32964-7_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32964-7_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32963-0

  • Online ISBN: 978-3-642-32964-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics