Abstract
Hybrid metaheuristics are powerful methods for solving complex problems in science and industry. Nevertheless, the resolution time remains prohibitive when dealing with large problem instances. As a result, the use of GPU computing has been recognized as a major way to speed up the search process. However, most GPU-accelerated algorithms of the literature do not take benefits of all the available CPU cores. In this paper, we introduce a new guideline for the design and implementation of effective hybrid metaheuristics using heterogeneous resources.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Talbi, E.G.: A taxonomy of hybrid metaheuristics. J. Heuristics 8(5), 541–564 (2002)
Ryoo, S., Rodrigues, C.I., Stone, S.S., Stratton, J.A., Ueng, S.Z., Baghsorkhi, S.S., Mei, W., Hwu, W.: Program optimization carving for gpu computing. J. Parallel Distributed Computing 68(10), 1389–1401 (2008)
Munawar, A., Wahib, M., Munetomo, M., Akama, K.: Hybrid of genetic algorithm and local search to solve max-sat problem using nvidia cuda framework. Genetic Programming and Evolvable Machines 10, 391–415 (2009)
Tsutsui, S., Fujimoto, N.: Aco with tabu search on a gpu for solving qaps using move-cost adjusted thread assignment. In: Krasnogor, N., Lanzi, P.L. (eds.) GECCO, pp. 1547–1554. ACM (2011)
Luong, T.V., Melab, N., Talbi, E.G.: Parallel hybrid evolutionary algorithms on gpu. In: IEEE Congress on Evolutionary Computation, pp. 1–8 (2010)
Talbi, E.G.: Metaheuristics: From design to implementation. Wiley (2009)
Wong, M.L., Wong, T.T., Fok, K.L.: Parallel evolutionary algorithms on graphics processing unit. In: IEEE Congress on Evolutionary Computation, pp. 2286–2293 (2005)
Mussi, L., Cagnoni, S., Daolio, F.: Gpu-based road sign detection using particle swarm optimization. In: ISDA, pp. 152–157. IEEE Computer Society (2009)
Bai, H., OuYang, D., Li, X., He, L., Yu, H.: Max-min ant system on gpu with cuda. In: Proceedings of the 2009 Fourth International Conference on Innovative Computing, Information and Control, ICICIC 2009, pp. 801–804. IEEE Computer Society, Washington, DC (2009)
Janiak, A., Janiak, W.A., Lichtenstein, M.: Tabu search on gpu. J. UCS 14(14), 2416–2426 (2008)
Zhu, W., Curry, J., Marquez, A.: Simd tabu search with graphics hardware acceleration on the quadratic assignment problem. International Journal of Production Research (2008)
Czapinski, M., Barnes, S.: Tabu search with two approaches to parallel flowshop evaluation on cuda platform. J. Parallel Distrib. Comput. 71(6), 802–811 (2011)
Luong, T.V., Melab, N., Talbi, E.G.: Gpu computing for parallel local search metaheuristic algorithms. IEEE Transactions on Computers 99(preprints) (2011)
Taillard, E.D.: Fant: Fast ant system. Technical report (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Van Luong, T., Taillard, E., Melab, N., Talbi, EG. (2012). Parallelization Strategies for Hybrid Metaheuristics Using a Single GPU and Multi-core Resources. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds) Parallel Problem Solving from Nature - PPSN XII. PPSN 2012. Lecture Notes in Computer Science, vol 7492. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32964-7_37
Download citation
DOI: https://doi.org/10.1007/978-3-642-32964-7_37
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-32963-0
Online ISBN: 978-3-642-32964-7
eBook Packages: Computer ScienceComputer Science (R0)