Skip to main content

An Improved Multiobjectivization Strategy for HP Model-Based Protein Structure Prediction

  • Conference paper
Parallel Problem Solving from Nature - PPSN XII (PPSN 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7492))

Included in the following conference series:

Abstract

Through multiobjectivization, a single-objective problem is restated in multiobjective form with the aim of enabling a more efficient search process. Recently, this transformation was applied with success to the hydrophobic-polar (HP) lattice model, which is an abstract representation of the protein structure prediction problem. The use of alternative multiobjective formulations of the problem has led to significantly better results. In this paper, an improved multiobjectivization for the HP model is proposed. By decomposing the HP model’s energy function, a two-objective formulation for the problem is defined. A comparative analysis reveals that the new proposed multiobjectivization evaluates favorably with respect to both the conventional single-objective and the previously reported multiobjective formulations. Statistical significance testing and the use of a large set of test cases support the findings of this study. Both two-dimensional and three-dimensional lattices are considered.

This research has been partially funded by CONACyT projects 105060 and 99276.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berger, B., Leighton, T.: Protein Folding in the Hydrophobic-Hydrophilic (HP) Model is NP-complete. In: International Conference on Research in Computational Molecular Biology, pp. 30–39. ACM, New York (1998)

    Google Scholar 

  2. Brockhoff, D., Friedrich, T., Hebbinghaus, N., Klein, C., Neumann, F., Zitzler, E.: Do Additional Objectives Make a Problem Harder? In: Genetic and Evolutionary Computation Conference, pp. 765–772. ACM, London (2007)

    Google Scholar 

  3. Crescenzi, P., Goldman, D., Papadimitriou, C., Piccolboni, A., Yannakakis, M.: On the Complexity of Protein Folding. In: ACM Symposium on Theory of Computing, pp. 597–603. ACM, Dallas (1998)

    Google Scholar 

  4. Cutello, V., Narzisi, G., Nicosia, G.: A Multi-Objective Evolutionary Approach to the Protein Structure Prediction Problem. Journal of The Royal Society Interface 3(6), 139–151 (2006)

    Article  Google Scholar 

  5. Day, R., Zydallis, J., Lamont, G.: Solving the Protein Structure Prediction Problem Through a Multi-Objective Genetic Algorithm. In: IEEE/DARPA International Conference on Computational Nanoscience, pp. 32–35 (2002)

    Google Scholar 

  6. Dill, K.: Theory for the Folding and Stability of Globular Proteins. Biochemistry 24(6), 1501–1509 (1985)

    Article  Google Scholar 

  7. Garza-Fabre, M., Rodriguez-Tello, E., Toscano-Pulido, G.: Multiobjectivizing the HP Model for Protein Structure Prediction. In: Hao, J.-K., Middendorf, M. (eds.) EvoCOP 2012. LNCS, vol. 7245, pp. 182–193. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  8. Garza-Fabre, M., Toscano-Pulido, G., Rodriguez-Tello, E.: Locality-based Multiobjectivization for the HP Model of Protein Structure Prediction. In: Genetic and Evolutionary Computation Conference, ACM, Philadelphia (2012)

    Google Scholar 

  9. Greiner, D., Emperador, J.M., Winter, G., Galván, B.: Improving Computational Mechanics Optimum Design Using Helper Objectives: An Application in Frame Bar Structures. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 575–589. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  10. Handl, J., Lovell, S.C., Knowles, J.D.: Investigations into the Effect of Multiobjectivization in Protein Structure Prediction. In: Rudolph, G., Jansen, T., Lucas, S., Poloni, C., Beume, N. (eds.) PPSN X. LNCS, vol. 5199, pp. 702–711. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  11. Handl, J., Lovell, S.C., Knowles, J.D.: Multiobjectivization by Decomposition of Scalar Cost Functions. In: Rudolph, G., Jansen, T., Lucas, S., Poloni, C., Beume, N. (eds.) PPSN X. LNCS, vol. 5199, pp. 31–40. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  12. Jähne, M., Li, X., Branke, J.: Evolutionary Algorithms and Multi-Objectivization for the Travelling Salesman Problem. In: Genetic and Evolutionary Computation Conference, pp. 595–602. ACM, Montreal (2009)

    Google Scholar 

  13. Jensen, M.: Helper-Objectives: Using Multi-Objective Evolutionary Algorithms for Single-Objective Optimisation. Journal of Mathematical Modelling and Algorithms 3, 323–347 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Knowles, J., Corne, D.: Properties of an Adaptive Archiving Algorithm for Storing Nondominated Vectors. IEEE Transactions on Evolutionary Computation 7(2), 100–116 (2003)

    Article  Google Scholar 

  15. Knowles, J.D., Watson, R.A., Corne, D.W.: Reducing Local Optima in Single-Objective Problems by Multi-objectivization. In: Zitzler, E., Deb, K., Thiele, L., Coello Coello, C.A., Corne, D.W. (eds.) EMO 2001. LNCS, vol. 1993, pp. 269–283. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  16. Lochtefeld, D., Ciarallo, F.: Helper-Objective Optimization Strategies for the Job-Shop Scheduling Problem. Applied Soft Computing 11(6), 4161–4174 (2011)

    Article  Google Scholar 

  17. Lopes, H.S.: Evolutionary Algorithms for the Protein Folding Problem: A Review and Current Trends. In: Smolinski, T.G., Milanova, M.G., Hassanien, A.-E. (eds.) Comp. Intel. in Biomed. & Bioinform. SCI, vol. 151, pp. 297–315. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  18. López-Ibáñez, M., Knowles, J., Laumanns, M.: On Sequential Online Archiving of Objective Vectors. In: Takahashi, R.H.C., Deb, K., Wanner, E.F., Greco, S. (eds.) EMO 2011. LNCS, vol. 6576, pp. 46–60. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  19. Segredo, E., Segura, C., Leon, C.: A Multiobjectivised Memetic Algorithm for the Frequency Assignment Problem. In: IEEE Congress on Evolutionary Computation, New Orleans, LA, USA, pp. 1132–1139 (2011)

    Google Scholar 

  20. Soares Brasil, C., Botazzo Delbem, A., Ferraz Bonetti, D.: Investigating Relevant Aspects of MOEAs for Protein Structures Prediction. In: Genetic and Evolutionary Computation Conference, pp. 705–712. ACM, Dublin (2011)

    Google Scholar 

  21. Vite-Silva, I., Cruz-Cortés, N., Toscano-Pulido, G., de la Fraga, L.G.: Optimal Triangulation in 3D Computer Vision Using a Multi-objective Evolutionary Algorithm. In: Giacobini, M. (ed.) EvoWorkshops 2007. LNCS, vol. 4448, pp. 330–339. Springer, Heidelberg (2007)

    Google Scholar 

  22. Zhao, X.: Advances on Protein Folding Simulations Based on the Lattice HP models with Natural Computing. Applied Soft Computing 8(2), 1029–1040 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Garza-Fabre, M., Rodriguez-Tello, E., Toscano-Pulido, G. (2012). An Improved Multiobjectivization Strategy for HP Model-Based Protein Structure Prediction. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds) Parallel Problem Solving from Nature - PPSN XII. PPSN 2012. Lecture Notes in Computer Science, vol 7492. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32964-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32964-7_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32963-0

  • Online ISBN: 978-3-642-32964-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics