Abstract
In this paper, we analyze a new proposal for a knapsack-type cryptosystem, recently published by Wang and Hu ([1]), along with two cryptanalyses of it, carried out by Youssef ([2]) and Lee ([3]). The cryptosystem proves to be safe only if the keys have very large sizes, but this severely impacts the use of the system from a practical point of view.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Wang, B., Hu, Y.: Quadratic compact knapsack public-key cryptosystem. Comput. Math. Appl. 59(1), 194–206 (2010)
Youssef, A.M.: Cryptanalysis of a quadratic knapsack cryptosystem. Comput. Math. Appl. 61(4), 1261–1265 (2011)
Lee, M.S.: Cryptanalysis of a quadratic compact knapsack public-key cryptosystem. Comput. Math. Appl. 62, 3614–3621 (2011)
Kate, A., Goldberg, I.: Generalizing cryptosystems based on the subset sum problem. Int. J. Inf. Secur. 10(3), 189–199 (2011)
Wang, B., Wu, Q., Hu, Y.: A knapsack-based probabilistic encryption scheme. Inform. Sci. 177(19), 3981–3994 (2007)
Youssef, A.M.: Cryptanalysis of a knapsack-based probabilistic encryption scheme. Inform. Sci. 179(18), 3116–3121 (2009)
Herrero, Á., Zurutuza, U., Corchado, E.: A Neural-Visualization IDS for Honeynet Data. International Journal of Neural Systems 22(2), 1–18 (2012)
Liu, H., Abraham, A., Snášel, V., McLoone, S.: Swarm scheduling approaches for work-flow applications with security constraints in distributed data-intensive computing environments. Information Sciences 192, 228–243 (2012)
Corchado, E., Herrero, Á.: Neural visualization of network traffic data for intrusion detection. Applied Soft Computing 11(2), 2042–2056 (2011)
Panda, M., Abraham, A., Das, S., Patra, M.R.: Network intrusion detection system: A machine learning approach. Intelligent Decision Technologies 5(4), 347–356 (2011)
Lenstra, A., Lenstra Jr., H., Lovász, L.: Factoring polynomials with rational coefficients. Math. Ann. 261, 515–534 (1982)
Nguyen, P.Q., Vallée, B. (eds.): The LLL Algorithm. Survey and Applications. Information Security and Cryptography. Springer, Heidelberg (2010)
Hernández Encinas, L., Muñoz Masqué, J., Queiruga Dios, A.: Analysis of the efficiency of the Chor-Rivest cryptosystem implementation in a safe-parameter range. Inform. Sci. 179, 4219–4226 (2009)
Vaudenay, S.: Cryptanalysis of the Chor-Rivest cryptosystem. J. Cryptology 14, 87–100 (2001)
Merkle, R., Hellman, M.: Hiding information and signatures in trap-door knapsacks. IEEE Trans. Inform. Theory 24(5), 525–530 (1978)
Shamir, A.: A polynomial time algorithm for breaking the basic Merkle-Hellman cryptosystem. IEEE Trans. Inform. Theory 30(5), 699–704 (1984)
Bach, E., Shallit, J.: Algorithmic Number Theory, Vol. I: Efficient Algorithms. The MIT Press, Cambridge (1996)
Knuth, D.: The Art of Computer Programming, 3rd edn. Addison-Wesley Series in Computer Science, vol. 2 - Seminumerical Algorithms. Addison-Wesley Publishing Co., Reading (1998)
Apostol, T.: Introduction to Analytic Number Theory, 4th corrected edn. Undergraduate Texts in Mathematics. Springer, NY (1976)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Durán Díaz, R., Hernández Encinas, L., Muñoz Masqué, J. (2013). Comments on a Cryptosystem Proposed by Wang and Hu. In: Herrero, Á., et al. International Joint Conference CISIS’12-ICEUTE´12-SOCO´12 Special Sessions. Advances in Intelligent Systems and Computing, vol 189. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33018-6_6
Download citation
DOI: https://doi.org/10.1007/978-3-642-33018-6_6
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-33017-9
Online ISBN: 978-3-642-33018-6
eBook Packages: EngineeringEngineering (R0)