Skip to main content

Towards Vague Geographic Data Warehouses

  • Conference paper
Geographic Information Science (GIScience 2012)

Abstract

Currently, geographic data warehouses provide a means of carrying out spatial analysis together with agile and flexible multidimensional analytical queries over huge volumes of data. However, they do not enable the representation and neither the analysis over real world phenomena that have uncertain locations or vague boundaries, which are denoted by vague spatial objects. In this paper, we introduce the vague geographic data warehouse (vGDW) and its spatially-enabled components at the logical level: attributes, measures, dimensions, hierarchies and queries. We base the vGDW on exact models to represent vague spatial objects. In addition, we combine the fuzzy model with the exact model in relational vGDW to improve the expressiveness of the queries. Finally, a case study is presented to validate our contributions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Malinowski, E., Zimányi, E.: Advanced Data Warehouse Design: From Conventional to Spatial and Temporal Applications. Springer (2008)

    Google Scholar 

  2. Bimonte, S., Tchounikine, A., Miquel, M., Pinet, F.: When Spatial Analysis Meets OLAP: Multidimensional Model and Operators. In: Taniar, D., Iwan, L. (eds.) Exploring Advances in Interdisciplinary Data Mining and Analytics, pp. 249–277. IGI (2011)

    Google Scholar 

  3. Siqueira, T.L.L., Ciferri, C.D.A., Times, V.C., Ciferri, R.R.: The SB-index and the HSB-Index: efficient indices for spatial data warehouses. Geoinformatica 16(1), 165–205 (2011)

    Article  Google Scholar 

  4. Burrough, P.A., Frank, A.U. (eds.): Geographic Objects with Indeterminate Boundaries. GISDATA, vol. 2. Taylor & Francis (1996)

    Google Scholar 

  5. Schneider, M.: Fuzzy Spatial Data Types for Spatial Uncertainty Management in Databases. In: Handbook of Research on Fuzzy Information Processing in Databases, pp. 490–515. IGI (2008)

    Google Scholar 

  6. Yuen, S., Tao, Y., Xiao, X., Pei, J.: Superseding Nearest Neighbor Search on Uncertain Spatial Databases. TKDE 22(7), 1041–1055 (2010)

    Google Scholar 

  7. Pauly, A., Schneider, M.: VASA: An algebra for vague spatial data in databases. Inf. Syst. 35(1), 111–138 (2010)

    Article  Google Scholar 

  8. Kimball, R., Ross, M.: The Data Warehouse Toolkit, 2nd edn. Wiley (2002)

    Google Scholar 

  9. Bejaoui, L., Pinet, F., Schneider, M., Bédard, Y.: OCL for formal modelling of topological constraints involving regions with broad boundaries. GeoInformatica 14(3), 353–378 (2010)

    Article  Google Scholar 

  10. Bejaoui, L., Pinet, F., Bédard, Y., Schneider, M.: Qualified topological relations between spatial objects with possible vague shape. IJGIS 23(7), 877–921 (2009)

    Google Scholar 

  11. Cheng, R., Kalashnikov, D.V., Prabhakar, S.: Evaluating Probabilistic Queries over Imprecise Data. In: SIGMOD Conference, pp. 551–562 (2003)

    Google Scholar 

  12. Dilo, A., de By, R.A., Stein, A.: A System of Types and Operators for Handling Vague Spatial Objects. IJGIS 21(4), 397–426 (2007)

    Google Scholar 

  13. Bittner, T., Stell, J.G.: Vagueness and Rough Location. Geoinformatica 6(2), 99–121 (2002)

    Article  MATH  Google Scholar 

  14. Worboys, M.: Computation with imprecise geospatial data. Computers, Environmental and Urban Systems 22(2), 85–106 (1998)

    Article  Google Scholar 

  15. Egenhofer, M.J., Franzosa, R.D.: Point-set Topological Spatial Relations. IJGIS 5(2), 161–174 (1991)

    Google Scholar 

  16. Harinarayan, V., Rajaraman, A., Ullman, J.D.: Implementing Data Cubes Efficiently. ACM SIGMOD Record 25(2), 205–216 (1996)

    Article  Google Scholar 

  17. Stefanovic, N., Han, J., Koperski, K.: Object-Based Selective Materialization for Efficient Implementation of Spatial Data Cubes. TKDE 12(6), 938–958 (2000)

    Google Scholar 

  18. Siqueira, T.L.L., Ciferri, R.R., Times, V.C., Ciferri, C.D.A.: The Impact of Spatial Data Redundancy on SOLAP Query Performance. JBCS 15(2), 19–34 (2009)

    Google Scholar 

  19. Siqueira, T.L.L., Mateus, R.C., Ciferri, R.R., Times, V.C., Ciferri, C.D.A.: Querying Vague Spatial Information in Geographic Data Warehouses. In: AGILE Conference, pp. 379–397 (2011)

    Google Scholar 

  20. Pourabbas, E., Rafanelli, M.: Characterization of Hierarchies and Some Operators in OLAP environment. In: DOLAP, pp. 54–59 (1999)

    Google Scholar 

  21. Mateus, R.C., Times, V.C., Siqueira, T.L.L., Ciferri, R.R., Ciferri, C.D.A.: How Does the Spatial Data Redundancy Affect Query Performance in Geographic Data Warehouses? JIDM 1, 519–534 (2010)

    Google Scholar 

  22. Brito, J.J., Siqueira, T.L.L., Times, V.C., Ciferri, R.R., de Ciferri, C.D.: Efficient Processing of Drill-across Queries over Geographic Data Warehouses. In: Cuzzocrea, A., Dayal, U. (eds.) DaWaK 2011. LNCS, vol. 6862, pp. 152–166. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  23. Brinkhoff, T., Kriegel, H.P., Schneider, R., Seeger, B.: Multi-step Processing of Spatial. In: ACM SIGMOD Conf., pp. 197–208 (1994)

    Google Scholar 

  24. Mohan, P., Wilson, R., Shekhar, S., George, B., Levine, N., Celik, M.: Should SDBMS support a join index?: a case study from CrimeStat. In: ACM GIS, pp. 1–10 (2008)

    Google Scholar 

  25. Sampaio, M.C., Souza, A.G., Baptista, C.S.: Towards a Logical Multidimensional Model for Spatial Data Warehousing and OLAP. In: DOLAP, pp. 83–90 (2006)

    Google Scholar 

  26. Vaisman, A., Zimányi, E.: A multidimensional model representing continuous fields in spatial data warehouses. In: ACM GIS, pp. 168–177 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Siqueira, T.L.L., de Aguiar Ciferri, C.D., Times, V.C., Ciferri, R.R. (2012). Towards Vague Geographic Data Warehouses. In: Xiao, N., Kwan, MP., Goodchild, M.F., Shekhar, S. (eds) Geographic Information Science. GIScience 2012. Lecture Notes in Computer Science, vol 7478. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33024-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33024-7_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33023-0

  • Online ISBN: 978-3-642-33024-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics