Abstract
Currently, geographic data warehouses provide a means of carrying out spatial analysis together with agile and flexible multidimensional analytical queries over huge volumes of data. However, they do not enable the representation and neither the analysis over real world phenomena that have uncertain locations or vague boundaries, which are denoted by vague spatial objects. In this paper, we introduce the vague geographic data warehouse (vGDW) and its spatially-enabled components at the logical level: attributes, measures, dimensions, hierarchies and queries. We base the vGDW on exact models to represent vague spatial objects. In addition, we combine the fuzzy model with the exact model in relational vGDW to improve the expressiveness of the queries. Finally, a case study is presented to validate our contributions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Malinowski, E., Zimányi, E.: Advanced Data Warehouse Design: From Conventional to Spatial and Temporal Applications. Springer (2008)
Bimonte, S., Tchounikine, A., Miquel, M., Pinet, F.: When Spatial Analysis Meets OLAP: Multidimensional Model and Operators. In: Taniar, D., Iwan, L. (eds.) Exploring Advances in Interdisciplinary Data Mining and Analytics, pp. 249–277. IGI (2011)
Siqueira, T.L.L., Ciferri, C.D.A., Times, V.C., Ciferri, R.R.: The SB-index and the HSB-Index: efficient indices for spatial data warehouses. Geoinformatica 16(1), 165–205 (2011)
Burrough, P.A., Frank, A.U. (eds.): Geographic Objects with Indeterminate Boundaries. GISDATA, vol. 2. Taylor & Francis (1996)
Schneider, M.: Fuzzy Spatial Data Types for Spatial Uncertainty Management in Databases. In: Handbook of Research on Fuzzy Information Processing in Databases, pp. 490–515. IGI (2008)
Yuen, S., Tao, Y., Xiao, X., Pei, J.: Superseding Nearest Neighbor Search on Uncertain Spatial Databases. TKDE 22(7), 1041–1055 (2010)
Pauly, A., Schneider, M.: VASA: An algebra for vague spatial data in databases. Inf. Syst. 35(1), 111–138 (2010)
Kimball, R., Ross, M.: The Data Warehouse Toolkit, 2nd edn. Wiley (2002)
Bejaoui, L., Pinet, F., Schneider, M., Bédard, Y.: OCL for formal modelling of topological constraints involving regions with broad boundaries. GeoInformatica 14(3), 353–378 (2010)
Bejaoui, L., Pinet, F., Bédard, Y., Schneider, M.: Qualified topological relations between spatial objects with possible vague shape. IJGIS 23(7), 877–921 (2009)
Cheng, R., Kalashnikov, D.V., Prabhakar, S.: Evaluating Probabilistic Queries over Imprecise Data. In: SIGMOD Conference, pp. 551–562 (2003)
Dilo, A., de By, R.A., Stein, A.: A System of Types and Operators for Handling Vague Spatial Objects. IJGIS 21(4), 397–426 (2007)
Bittner, T., Stell, J.G.: Vagueness and Rough Location. Geoinformatica 6(2), 99–121 (2002)
Worboys, M.: Computation with imprecise geospatial data. Computers, Environmental and Urban Systems 22(2), 85–106 (1998)
Egenhofer, M.J., Franzosa, R.D.: Point-set Topological Spatial Relations. IJGIS 5(2), 161–174 (1991)
Harinarayan, V., Rajaraman, A., Ullman, J.D.: Implementing Data Cubes Efficiently. ACM SIGMOD Record 25(2), 205–216 (1996)
Stefanovic, N., Han, J., Koperski, K.: Object-Based Selective Materialization for Efficient Implementation of Spatial Data Cubes. TKDE 12(6), 938–958 (2000)
Siqueira, T.L.L., Ciferri, R.R., Times, V.C., Ciferri, C.D.A.: The Impact of Spatial Data Redundancy on SOLAP Query Performance. JBCS 15(2), 19–34 (2009)
Siqueira, T.L.L., Mateus, R.C., Ciferri, R.R., Times, V.C., Ciferri, C.D.A.: Querying Vague Spatial Information in Geographic Data Warehouses. In: AGILE Conference, pp. 379–397 (2011)
Pourabbas, E., Rafanelli, M.: Characterization of Hierarchies and Some Operators in OLAP environment. In: DOLAP, pp. 54–59 (1999)
Mateus, R.C., Times, V.C., Siqueira, T.L.L., Ciferri, R.R., Ciferri, C.D.A.: How Does the Spatial Data Redundancy Affect Query Performance in Geographic Data Warehouses? JIDM 1, 519–534 (2010)
Brito, J.J., Siqueira, T.L.L., Times, V.C., Ciferri, R.R., de Ciferri, C.D.: Efficient Processing of Drill-across Queries over Geographic Data Warehouses. In: Cuzzocrea, A., Dayal, U. (eds.) DaWaK 2011. LNCS, vol. 6862, pp. 152–166. Springer, Heidelberg (2011)
Brinkhoff, T., Kriegel, H.P., Schneider, R., Seeger, B.: Multi-step Processing of Spatial. In: ACM SIGMOD Conf., pp. 197–208 (1994)
Mohan, P., Wilson, R., Shekhar, S., George, B., Levine, N., Celik, M.: Should SDBMS support a join index?: a case study from CrimeStat. In: ACM GIS, pp. 1–10 (2008)
Sampaio, M.C., Souza, A.G., Baptista, C.S.: Towards a Logical Multidimensional Model for Spatial Data Warehousing and OLAP. In: DOLAP, pp. 83–90 (2006)
Vaisman, A., Zimányi, E.: A multidimensional model representing continuous fields in spatial data warehouses. In: ACM GIS, pp. 168–177 (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Siqueira, T.L.L., de Aguiar Ciferri, C.D., Times, V.C., Ciferri, R.R. (2012). Towards Vague Geographic Data Warehouses. In: Xiao, N., Kwan, MP., Goodchild, M.F., Shekhar, S. (eds) Geographic Information Science. GIScience 2012. Lecture Notes in Computer Science, vol 7478. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33024-7_13
Download citation
DOI: https://doi.org/10.1007/978-3-642-33024-7_13
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-33023-0
Online ISBN: 978-3-642-33024-7
eBook Packages: Computer ScienceComputer Science (R0)