Skip to main content

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 190))

Abstract

An outlier detection method for high dimensional data is presented in this paper. It makes use of a robust and regularized estimation of the covariance matrix which is achieved by maximization of a penalized version of the likelihood function for joint location and inverse scatter. A penalty parameter controls the amount of regularization.

The algorithm is computation intensive but provides higher efficiency than other methods. This fact will be demonstrated in an example with simulated data, in which the presented method is compared to another algorithm for high dimensional data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Croux, C., Gelper, S., Haesbroeck, G.: The regularized minimum covariance determinant estimator (preprint), http://www.econ.kuleuven.be/public/NDBAE06/public.htm

  2. Croux, C., Haesbroeck, G.: Robust scatter regularization. Compstat, Book of Abstracts, Paris, Conservatoire National des Arts et Métiers (CNAM) and the French National Institute for Research in Computer Science and Control, INRIA (2010)

    Google Scholar 

  3. Filzmoser, P., Gschwandtner, M.: mvoutlier: Multivariate outlier detection based on robust methods. R package version 1.9.4 (2011)

    Google Scholar 

  4. Filzmoser, P., Maronna, R., Werner, M.: Outlier identification in high dimensions. Comput. Stat. Data An. 52, 1694–1711 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Friedman, J.H., Hastie, T., Tibshirani, R.: Sparse inverse covariance estimation with the graphical lasso. Biostat. 9, 432–441 (2007)

    Article  Google Scholar 

  6. Rousseeuw, P.J., Van Driessen, K.: A fast algorithm for the minimum covariance determinant estimator. Technometrics 41, 212–223 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moritz Gschwandtner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gschwandtner, M., Filzmoser, P. (2013). Outlier Detection in High Dimension Using Regularization. In: Kruse, R., Berthold, M., Moewes, C., Gil, M., Grzegorzewski, P., Hryniewicz, O. (eds) Synergies of Soft Computing and Statistics for Intelligent Data Analysis. Advances in Intelligent Systems and Computing, vol 190. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33042-1_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33042-1_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33041-4

  • Online ISBN: 978-3-642-33042-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics