Abstract
An outlier detection method for high dimensional data is presented in this paper. It makes use of a robust and regularized estimation of the covariance matrix which is achieved by maximization of a penalized version of the likelihood function for joint location and inverse scatter. A penalty parameter controls the amount of regularization.
The algorithm is computation intensive but provides higher efficiency than other methods. This fact will be demonstrated in an example with simulated data, in which the presented method is compared to another algorithm for high dimensional data.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Croux, C., Gelper, S., Haesbroeck, G.: The regularized minimum covariance determinant estimator (preprint), http://www.econ.kuleuven.be/public/NDBAE06/public.htm
Croux, C., Haesbroeck, G.: Robust scatter regularization. Compstat, Book of Abstracts, Paris, Conservatoire National des Arts et Métiers (CNAM) and the French National Institute for Research in Computer Science and Control, INRIA (2010)
Filzmoser, P., Gschwandtner, M.: mvoutlier: Multivariate outlier detection based on robust methods. R package version 1.9.4 (2011)
Filzmoser, P., Maronna, R., Werner, M.: Outlier identification in high dimensions. Comput. Stat. Data An. 52, 1694–1711 (2008)
Friedman, J.H., Hastie, T., Tibshirani, R.: Sparse inverse covariance estimation with the graphical lasso. Biostat. 9, 432–441 (2007)
Rousseeuw, P.J., Van Driessen, K.: A fast algorithm for the minimum covariance determinant estimator. Technometrics 41, 212–223 (1999)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Gschwandtner, M., Filzmoser, P. (2013). Outlier Detection in High Dimension Using Regularization. In: Kruse, R., Berthold, M., Moewes, C., Gil, M., Grzegorzewski, P., Hryniewicz, O. (eds) Synergies of Soft Computing and Statistics for Intelligent Data Analysis. Advances in Intelligent Systems and Computing, vol 190. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33042-1_26
Download citation
DOI: https://doi.org/10.1007/978-3-642-33042-1_26
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-33041-4
Online ISBN: 978-3-642-33042-1
eBook Packages: EngineeringEngineering (R0)