Abstract
Social image hosting websites such as Flickr provide services to users for sharing their images. Users can upload and tag their images or search for images by using keywords which describe image semantics. However various low quality tags in the user generated folksonomy tags have negative influence on the image search results and user experience. To improve tag quality, we propose three approaches with one framework to automatically generate new tags, and rank the new tags as well as the existing raw tags, for both untagged and tagged images. The approaches utilize and integrate both textual and visual information, and analyze intra- and inter- probabilistic relationships among images and tags based on a graph model. The experiments based on the dataset constructed from Flickr illustrate the effectiveness and efficiency of our approaches.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bischoff, K., Firan, C.S., Nejdl, W., Paiu, R.: Can all tags be used for search? In: CIKM 2008, pp. 193–202 (2008)
Sigurbjörnsson, B., van Zwol, R.: Flickr tag recommendation based on collective knowledge. In: WWW 2008, pp. 327–336 (2008)
Datta, R., Joshi, D., Li, J., Wang, J.: Image retrieval: Ideas, influences, and trends of the new age. ACM Comput. Surv. 40(2), 1–60 (2008)
Liu, D., Hua, X.-S., Yang, L., Wang, M., Zhang, H.-J.: Tag ranking. In: WWW 2009, pp. 351–360 (2009)
Chen, H.M., Chang, M.H., Chang, P.C., Tien, M.C., Hsu, W.H., Wu, J.L.: SheepDog: group and tag recommendation for flickr photos by automatic search-based learning. In: MM 2008, pp. 737–740 (2008)
Wu, L., Yang, L.J., Yu, N.H., Hua, X.S.: Learning to tag. In: WWW 2009, pp. 361–370 (2009)
Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. J. ACM 46(5), 604–632 (1999)
Brin, S., Page, L.: The Anatomy of a Large-Scale Hypertextual Web Search Engine. Computer Networks and ISDN Systems 30(1-7), 107–117 (1998)
Lowe, D.G.: Distinctive Image Features from Scale-Invariant Keypoints. IJCV 60(2), 91–110 (2004)
Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Li, F.F.: ImageNet: A large-scale hierarchical image database. In: IEEE Computer Society Conference on CVPR 2009, pp. 248–255 (2009)
Huiskes, M.J., Lew, M.S.: The MIR Flickr Retrieval Evaluation. In: MIR 2008 (2008)
Jarvelin, K., Kekalainen, J.: Cumulated gain-based evaluation of IR techniques. ACM Transactions on Information Systems (TOIS) 20(4) (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Li, J., Ma, Q., Asano, Y., Yoshikawa, M. (2012). Improving Folksonomy Tag Quality of Social Image Hosting Website. In: Bao, Z., et al. Web-Age Information Management. WAIM 2012. Lecture Notes in Computer Science, vol 7419. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33050-6_26
Download citation
DOI: https://doi.org/10.1007/978-3-642-33050-6_26
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-33049-0
Online ISBN: 978-3-642-33050-6
eBook Packages: Computer ScienceComputer Science (R0)