Abstract
In a data stream management system, users may not be acquainted with the actual data arriving on the stream. Therefore, they may issue queries that return an empty result over several windows. In the relational context, relaxation skyline queries have been proposed as a solution to the so-called empty answer problem. Given a query composed of selection and join operations, a relaxation skyline query relies on the usage of a relaxation function (usually, a numeric function) to quantify the distance of each tuple (or pair of tuples in case of join) from the specified conditions and uses a skyline-based semantics to compute the answer. This paper addresses skyline-based relaxation over data streams. Relaxation skyline queries for selection and window-based join over data streams are defined and two different processing algorithms are proposed and experimentally compared.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Agrawal, S., et al.: Automated Ranking of Database Query Results. In: CIDR (2003)
Arasu, A., et al.: STREAM: The Stanford Stream Data Manager. IEEE Data Eng. Bull. 26(1), 19–26 (2003)
Babcock, B., Datar, M., Motwani, R.: Load Shedding for Aggregation Queries over Data Streams. In: ICDE, pp. 350–361 (2004)
Babu, S., Widom, J.: Continuous Queries over Data Stream. SIGMOD Record 30(3), 109–120 (2001)
Börzsönyi, S., Kossmann, D., Stocker, K.: The Skyline Operator. In: ICDE, pp. 421–430 (2001)
Considine, J., et al.: Robust Approximate Aggregation in Sensor Data Management Systems. ACM Trans. Database Syst. 34(1) (2009)
Das, A., Gehrke, J., Riedewald, M.: Approximate Join Processing Over Data Streams. In: SIGMOD Conference, pp. 40–51 (2003)
Guttman, A.: R-Trees: A Dynamic Index Structure for Spatial Searching. In: SIGMOD Conference, pp. 47–57 (1984)
Ilyas, I.F., Beskales, G., Soliman, M.A.: A Survey of Top- k Query Processing Techniques in Relational Database Systems. ACM Comput. Surv. 40(4) (2008)
Kadlag, A., Wanjari, A.V., Freire, J.-L., Haritsa, J.R.: Supporting Exploratory Queries in Databases. In: Lee, Y., Li, J., Whang, K.-Y., Lee, D. (eds.) DASFAA 2004. LNCS, vol. 2973, pp. 594–605. Springer, Heidelberg (2004)
Koudas, N., et al.: Relaxing Join and Selection Queries. In: VLDB, pp. 199–210 (2006)
Mishra, C., Koudas, N.: Interactive Query Refinement. In: EDBT, pp. 862–873 (2009)
Mouratidis, K., Papadias, D.: Continuous Nearest Neighbor Queries over Sliding Windows. IEEE Trans. Knowl. Data Eng. 19(6), 789–803 (2007)
Pan, L., Luo, J., Li, J.: Probing Queries in Wireless Sensor Networks. In: ICDCS, pp. 546–553 (2008)
Tao, Y., Papadias, D.: Maintaining Sliding Window Skylines on Data Streams. IEEE Trans. Knowl. Data Eng. 18(2), 377–391 (2006)
Tatbul, N., et al.: Load Shedding in a Data Stream Manager. In: VLDB, pp. 309–320 (2003)
Wilschut, A.N., Apers, P.M.G.: Dataflow Query Execution in a Parallel Main-Memory Environment. In: PDIS, pp. 68–77 (1991)
Yi, K., et al.: Small Synopses for Group-by Query Verification on Outsourced Data Streams. ACM Trans. Database Syst. 34(3) (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Catania, B., Guerrini, G., Pinto, M.T., Podestà, P. (2012). Towards Relaxed Selection and Join Queries over Data Streams. In: Morzy, T., Härder, T., Wrembel, R. (eds) Advances in Databases and Information Systems. ADBIS 2012. Lecture Notes in Computer Science, vol 7503. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33074-2_10
Download citation
DOI: https://doi.org/10.1007/978-3-642-33074-2_10
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-33073-5
Online ISBN: 978-3-642-33074-2
eBook Packages: Computer ScienceComputer Science (R0)