Skip to main content

On a Wideband Fast Fourier Transform Using Piecewise Linear Approximations: Application to a Radio Telescope Spectrometer

  • Conference paper
Algorithms and Architectures for Parallel Processing (ICA3PP 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7439))

Abstract

In a radio telescope, a spectrometer analyzes radio frequency (RF) received from celestial objects at the frequency domain by performing a fast fourier transform (FFT). In radio astronomy, the number of points for the FFT is larger than that for the general purpose one. Thus, in a conventional design, the twiddle factor memory becomes too large to implement. In this paper, we realize a twiddle factor by a piecewise linear approximation circuit consisting of a small memory, a multiplier, an adder, and a small logic circuit. We analyze the approximation error for the piecewise liner approximation circuit for the twiddle factor part. We implemented the 230 points FFT by the R2k FFT with the piecewise linear approximation circuits. Compared with the SETI spectrometer for 227-FFT, the eight parallelized proposed circuit for 227-FFT is 41.66 times faster, and that for 230-FFT is 5.20 times faster. Compared with the GPU-based spectrometer for 227-FFT, the proposed one is 8.75 times faster and dissipates lower power.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andraka, R.: A survey of CORDIC algorithms for FPGA based computers. In: FPGA 1998, pp. 191–200 (1998)

    Google Scholar 

  2. Altera Corp., FFT MegaCore Function v11.0 (2011)

    Google Scholar 

  3. Cooley, J.W., Tukey, J.W.: An algorithm for the machine computation of complex fourier series. Mathematics of Computation 19, 297–301 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  4. Duhamel, P., Hollmann, H.: Split-radix FFT algorithm. Electron. Lett. 20, 14–16 (1984)

    Article  Google Scholar 

  5. Goedecker, S.: Fast radix 2,3,4 and 5 kernels for fast fourier transformations on computers with overlapping multiply-add instructions. SIAM Journal Sci. Compt. 18, 1605–1611 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  6. HALCA: Highly Advanced Laboratory for Communications and Astronomy, http://www.vsop.isas.jaxa.jp/top.html

  7. He, S., Torkelson, M.: A new approach to pipeline FFT processor. In: IPPS 1996, pp. 766–770 (1996)

    Google Scholar 

  8. Jones, D.H., Powell, A., Bouganis, C.S., Cheung, P.Y.K.: GPU Versus FPGA for High Productivity Computing. In: FPL 2010, pp. 119–124 (2010)

    Google Scholar 

  9. Jain, V.K., Wadekar, S.A., Lin, L.: A universal nonlinear component and its application to WSI. IEEE Trans. Components, Hybrids, and Manufacturing Technology 16(7), 656–664 (1993)

    Article  Google Scholar 

  10. Karner, H., et al.: Multiply-add optimized FFT kernels. Math. Models and Methods in Appl. Sci. 11, 105–117 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kondo, H., Heien, E., Okita, M., Werthimer, D., Hagihara, K.: A multi-GPU spectrometer system for real-time wide bandwidth radio signal analysis. In: ISPA 2010, pp. 594–604 (2010)

    Google Scholar 

  12. Knight, W.R., Kaiser, R.: A Simple Fixed-Point Error Bound for the Fast Fourier Transform. IEEE Trans. Acoustics, Speech and Signal Proc. 27(6), 615–620 (1979)

    Article  Google Scholar 

  13. Linzer, E.N., Feig, E.: Implementation of efficient FFT algorithms on fused multiply-add architectures. IEEE Trans. Signal Processing 41, 93–107 (1993)

    Article  MATH  Google Scholar 

  14. Mars Scout Program, http://www.nasa.gov/

  15. Muller, J.M.: Elementary function: algorithms and implementation, 2nd edn. Birkhauser Boston, Inc., New York (2006)

    MATH  Google Scholar 

  16. Hirota, A., Kuno, N., Sato, N., Nakanishi, H., Tosaki, T., Sorai, K.: Variation of molecular gas properties across the spiral arms in IC 342: Large-scale 13CO (1-0) emission. PASJ (62), 1261–1275 (2010)

    Google Scholar 

  17. Parsons, A., et al.: PetaOp/Second FPGA signal processing for SETI and radio astronomy. In: Proc. of the Asilomar Conference on Signals, Systems, and Computers (2006)

    Google Scholar 

  18. Rabiner, L.R., Gold, B.: Theory and Application of Digital Signal Processing. Prentice-Hall Inc. (1975)

    Google Scholar 

  19. Sasao, T., Nagayama, S., Butler, J.T.: Numerical function generators using LUT cascades. IEEE Trans. on Comput. 56(6), 826–838 (2007)

    Article  MathSciNet  Google Scholar 

  20. SKA: Square Kilometre Array, http://www.skatelescope.org/

  21. SERENDIP: The Search for extra terrestrial intelligence at UC Berkeley, http://seti.berkeley.edu/SERENDIP/

  22. Schulte, M.J., Stine, J.E.: Approximating elementary functions with symmetric bipartite tables. IEEE Trans. Comput. 48(8), 842–847 (1999)

    Article  Google Scholar 

  23. Nvidia Corp., TESLA S1070 GPU Computing System, http://www.nvidia.com/

  24. Volder, J.E.: The CORDIC trigonometric computing technique. IRE Trans. on Electronic Computers, 330–334 (1959)

    Google Scholar 

  25. Xilinx Inc., LogiCORE IP fast fourier transform v7.1 (2011)

    Google Scholar 

  26. Zhou, B., Peng, Y., Hwang, D.: Pipeline FFT architectures optimized for FPGAs. Int’l Journal of Reconfigurable Computing (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nakahara, H., Nakanishi, H., Sasao, T. (2012). On a Wideband Fast Fourier Transform Using Piecewise Linear Approximations: Application to a Radio Telescope Spectrometer. In: Xiang, Y., Stojmenovic, I., Apduhan, B.O., Wang, G., Nakano, K., Zomaya, A. (eds) Algorithms and Architectures for Parallel Processing. ICA3PP 2012. Lecture Notes in Computer Science, vol 7439. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33078-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33078-0_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33077-3

  • Online ISBN: 978-3-642-33078-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics