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Abstract. We devise a framework for computing an approximate so-
lution path for an important class of parameterized semidefinite prob-
lems that is guaranteed to be ε-close to the exact solution path. The
problem of computing the entire regularization path for matrix factor-
ization problems such as maximum-margin matrix factorization fits into
this framework, as well as many other nuclear norm regularized convex
optimization problems from machine learning. We show that the combi-
natorial complexity of the approximate path is independent of the size
of the matrix. Furthermore, the whole solution path can be computed in
near linear time in the size of the input matrix.

The framework employs an approximative semidefinite program solver
for a fixed parameter value. Here we use an algorithm that has recently
been introduced by Hazan. We present a refined analysis of Hazan’s algo-
rithm that results in improved running time bounds for a single solution
as well as for the whole solution path as a function of the approximation
guarantee.

1 Introduction

We provide an algorithm for tracking an approximate solution of a parameterized
semidefinite program (SDP) along the parameter path. The algorithm is very
simple and comes with approximation quality- and running time guaranties. It
computes at some parameter value a slightly better approximate solution than
required, and keeps this solution along the path as long as the required approx-
imation quality can be guaranteed. Only when the approximation quality is no
longer sufficient, a new solution of the SDP is computed. Hence, the complexity
of the algorithm is determined by the time to compute a single approximate
SDP solution and the number of solution updates along the path. We show that,
if an approximation guarantee of ε > 0 is required, then the number of updates
is in O(1/ε), independent of the size of the problem.

Any SDP solver can be used within the framework to compute an approximate
solution of the SDP at fixed parameter values. Here we use Hazan’s algorithm [8],
which is a Frank-Wolfe type algorithm (also known as conditional gradient de-
scent) applied to SDPs. Hazan’s algorithm scales well to large inputs, provides
low-rank approximate solutions with guarantees, and only needs a simple ap-
proximate eigenvector computation in each of its iterations. A refined analysis
of this algorithm, that we present here, shows that its running time can be im-
proved to Õ(N/ε1.5), where N is the number of non-zeros in the input problem.
In the Õ notation we are ignoring polylogarithmic factors in N .
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Motivation. Our work is motivated by the problem of completing a matrix
Y ∈ R

m×n from which only a small fraction of the entries is known. This prob-
lem has been approached in a number of ways in recent years, see for exam-
ple [2,16,10]. Here we will consider the maximum-margin matrix factorization
approach that computes a completion X of Y as a solution of the following
optimization problem:

min
X∈Rm×n

∑

(i,j)∈Ω

(Xij − Yij)
2 + λ · ‖X‖∗ (1)

where Ω is the set of indices at which Y has been observed, and λ > 0 is the
regularization parameter. The solution X whose nuclear norm (also known as
trace norm) is ‖X‖∗ does not need to coincide with Y on the index set Ω. It can
be seen as a low rank approximation of Y , where the regularization parameter
λ controls the rank of X .

We consider the following equivalent constraint formulation of Problem (1),

minX
∑

(i,j)∈Ω(Xij − Yij)
2

s.t. ‖X‖∗ ≤ t
X ∈ R

m×n,

(2)

such that there is a one-to-one mapping between the solutions at the parameters
t and λ. In fact, Problem (1) is the Lagrangian of Problem (2). The latter
is a convex optimization problem that can be solved for fixed values of t using
standard convex optimization techniques. By the properties of the nuclear norm,
it is known that Problem (2) can be equivalently re-formulated as

minX f(X)
s.t. X � 0

Tr(X) ≤ t

X ∈ R
(m+n)×(m+n),

(3)

where f has to be chosen properly, and Tr(X) denotes the trace of X . We call
the set defined by the constraints of Problem (3) a spectrahedron that is growing
with t.

It remains to choose a good value for t. We use the simple algorithmic frame-
work that we have described above to track an ε-approximate solution along
the whole parameter range. It is interesting to note that in doing so, we follow
the standard approach for choosing a good value for t, namely, computing an
approximate solution for Problem (2) at a finite number of values for t, and then
picking the best out of these finitely many solutions. However, in contrast to
previous work, we automatically pick the values for t such that the whole pa-
rameter range is covered by an ε-approximate solution, for a specified accuracy
ε. We show that the number t-values at which a solution needs to be computed
such that the ε-approximation guarantee holds, is in O(1/ε), independent of the
size of the matrix Y . At the chosen t-values we use Hazan’s algorithm [8] to
compute an approximate solution for Problem (3).



Optimizing over the Growing Spectrahedron 505

Related Work. There have been algorithms proposed for computing the regu-
larization path of matrix factorization problems. d’Aspremont et al. [4] consider
the regularization path for sparse principal component analysis. However, here
it is known at which parameters one should compute a solution, i.e., all integral
values from 1 to n, where n is the number of variables.

Mazumder et al. [12] consider a very similar problem (regularized matrix
factorization) and provide an algorithm for computing a solution at a fixed
parameter t. They suggest to approximate the regularization path by computing
solutions at various values for t. However, the parameter values at which the
solutions are computed are chosen heuristically, e.g. on a uniform grid, and
therefore no continuous approximation guarantee can be given.

Our solution path algorithm is motivated by the approach of [6] for param-
eterized convex optimization problems over the simplex, such as e.g., support
vector machines. A direct but rather ad hoc extension of this approach to pa-
rameterized SDPs has appeared in [7].

Computing an approximate solution for a fixed parameter t simplifies to solv-
ing an SDP. The most widely-known implementations of SDP solvers are interior
point methods, which provide high-accuracy solutions. However, with a running
time that is a low-order polynomial in the number of variables, they do not
scale to medium/large problems. Proximal methods have been proposed to over-
come the disadvantages of interior point methods. These methods achieve better
running times at the expense of less accurate solutions [13,1,14]. Alternating
direction methods form yet another approach. On specific, well-structured SDP
problems, they achieve very good speed in practice [17].

Notation. For arbitrary real matrices, the standard inner product is defined as
A •B := Tr(ATB), and the (squared) Frobenius matrix norm ‖A‖2Fro := A •A
is the sum of all squared entries in the matrix. By S

n×n we denote the set
of symmetric n × n matrices. A ∈ S

n×n is called positive semidefinite (PSD),
written as A � 0, iff vTAv ≥ 0 ∀v ∈ R

n. Note that vTAv = A•vvT . λmax(A) ∈ R

denotes the largest eigenvalue of A. ‖A‖∗ is the nuclear norm of the matrix A,
also known as the trace norm (sum of the singular values).

2 Convex Optimization over the Spectrahedron

We consider convex optimization problems of the form

min
X∈St

f(X) (4)

where f : Sn×n → R is symmetric, convex, and continuously differentiable such
that −∇f(X) is not negative definite for all X ∈ St, and the domain St :=
{X ∈ S

n×n |X � 0, Tr(X) ≤ t} is the set of symmetric PSD matrices whose
trace is at most t. This set generalizes the set of all symmetric PSD matrices of
trace 1, i.e., the convex hull of all rank-1 matrices of unit trace, which is also
known as the spectrahedron. The spectrahedron can be seen as a generalization
of the unit simplex to the space of symmetric matrices.
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By the convexity of f , we have the following linearization, for any X,X0 ∈ St:

f(X) ≥ ∇f(X0) • (X −X0) + f(X0).

This allows us to define a lower bound function on (4) for any fixed matrix
X0 ∈ St as follows,

ωt(X0) := min
X∈St

∇f(X0)•(X−X0)+f(X0) = f(X0)−max
X∈St

−∇f(X0)•(X−X0).

The function ωt(X0) will be called here the Wolfe dual function1. Hence we can
define the duality gap as

gt(X0) := f(X0)− ωt(X0) = max
X∈St

−∇f(X0) • (X −X0) ≥ 0,

where non-negativity holds because of

f(X0) ≥ min
X∈St

f(X) ≥ min
X∈St

∇f(X0) • (X −X0) + f(X0) = ωt(X0).

By the definition of the objective function f , the gradient ∇f(X0) is always
a symmetric matrix (not necessarily PSD), and therefore has real eigenvalues,
which is important in the following. Furthermore, this allows to equip any iter-
ative SDP solver with guarantees for the duality gap by running until the gap
is smaller than a prescribed bound. The latter can be easily checked using the
following lemma.

Lemma 1. The Wolfe dual of Problem (4) can be written as

ωt(X0) = f(X0)− t · λmax (−∇f(X0))−∇f(X0) •X0,

and the duality gap can be written as

gt(X0) = t · λmax (−∇f(X0)) +∇f(X0) •X0.

Proof. It is well-known that any matrix X ∈ S
n×n can be written as X =∑n

i=1 λiuuu
T
i with the orthonormal system of eigenvectors ui, ‖ui‖ = 1 of X

and corresponding eigenvalues λi. Moreover Tr(X) =
∑n

i=1 λi. So we have

max
X∈St

G •X = max

n∑

i=1

αi(G • uiu
T
i ) = max

n∑

i=1

αiu
T
i Gui

= t · max
v∈Rn,‖v‖=1

vTGv [since G is not negative definite]

= t · λmax (G) ,

where the last equality is the variational characterization of the largest eigen-
value. The equality above can be interpreted as, any linear function must attain
its maximum at a “vertex” (extreme point) of St. Finally, both claims follow by
plugging in −∇f(X0) for G. 
�
1 Strictly speaking, this is not a proper ”dual” function. However, we follow here the
terminology of Clarkson [3].
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Remark 1. If we alternatively define St := {X ∈ S
n×n |X � 0, Tr(X) = t},

i.e., replacing “≤ t” by “= t”, then Lemma 1 also holds even if −∇f(X) can
become negative definite.

From the definition of the duality gap we derive the definition of an approximate
solution.

Definition 1. A matrix X ∈ St is an ε-approximation to Problem (4) if gt(X)
≤ ε.

Obviously, the duality gap is always an upper bound for the primal error ht(X)
of the approximate solution X , where ht(X) := f(X) − f(X∗) and X∗ is an
optimal solution of Problem (4) at parameter value t.

3 Hazan’s Algorithm Revisited

We adapt the algorithm by Hazan [8] for approximating SDPs over the spec-
trahedron to our needs, i.e., approximating SDPs over St. The proofs that we
provide in the following fix some minor errors in the original paper. We also
tighten the analysis and get improved bounds on the running time, Õ(N/ε1.5)
instead of Õ(N/ε2). In particular, we show that the eigenvector computation
that is employed by the algorithm only needs to be computed up to an accuracy
of ε instead of ε2.

We start with the simple observation that every SDP in the form of Prob-
lem (4) be converted into an equivalent SDP where the inequality constraint
Tr(X) ≤ t is replaced by the equality constraint Tr(X) = t, i.e., the optimiza-
tion problem minX∈St f(X) is equivalent to the optimization problem

minX̂ f̂(X̂)

s.t. X̂ � 0

Tr(X̂) = t

X̂ ∈ S
(n+1)×(n+1),

(5)

where f̂ is the same function as f but defined on the larger set of symmetric
matrices,

f̂(X̂) = f̂

((
X X2

XT
2 X3

))
:= f(X)

for X ∈ S
n×n, X2 ∈ R

n×1, X3 ∈ R
1×1. Every feasible solution X for Prob-

lem (4) can be converted into a feasible solution X̂ for Problem (5) with the
same objective function value and vice versa.

Hazan’s algorithm for computing an ε-approximate solution for Problem (5)
is summarized in pseudo-code in Algorithm 1.

The function ApproxEV used in Algorithm 1 returns an approximate eigen-
vector to the largest eigenvalue: given a square matrix M it returns a vector
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Algorithm 1. ApproxSDP

Input: Convex function f , trace t, k
Output: Approximate solution of Problem 5.
Initialize X0 = t · v0vT0 for some arbitrary rank-1 PSD matrix t · v0vT0 with trace t
and ‖v0‖ = 1.
for i = 0 to k do

Let αi =
2

i+2
.

Let εi =
αi·Cf

t
.

Compute vi = ApproxEV(−∇f(Xi), εi).
Set Xi+1 = Xi + αi(t · vivTi −Xi).

end for

v = ApproxEV(M, ε) of unit length that satisfies vTMv ≥ λmax(M) − ε. The
curvature constant Cf used in the algorithm is defined as

Cf := sup
X,Z∈St,
α∈[0,1],

Y =X+α(Z−X)

1

α2
(f(Y )− f(X)− (Y −X) • ∇f(X)) .

The curvature constant is a measure of how much the function f(X) deviates
from a linear approximation in X . The boundedness of this curvature is a widely
used in convex optimization, and can be upper bounded by the Lipschitz constant
of the gradient of f and the diameter of St. Now we can prove the following
theorem.

Theorem 1. For each k ≥ 1, the iterate Xk of Algorithm 1 satisfies f(Xk) −
f(X∗) ≤ ε, where f(X∗) is the optimal value for the minimization Problem (5),

and ε =
8Cf

k+2 .

Proof. For each iteration of the algorithm, we have that

f(Xi+1) = f(Xi + αi(t · vivTi −Xi))

≤ f(Xi) + αi(t · vivTi −Xi) • ∇f(Xi) + α2
iCf , (6)

where the last inequality follows from the definition of the curvature Cf . Fur-
thermore,

(t · vivTi −Xi) • ∇f(Xi) = (Xi − t · vivTi ) • (−∇f(Xi))

= Xi • (−∇f(Xi))− t · vTi (−∇f(Xi))vi

≤ −Xi • ∇f(Xi)− t · (λmax(−∇f(Xi))− εi)

= −gt(Xi) + t · εi
= −gt(Xi) + αi · Cf .

The last two equalities follow from the remark after Lemma 1 and from setting
εi =

αi·Cf

t within Algorithm 1. Hence, Inequality (6) evaluates to

f(Xi+1) ≤ f(Xi)− αigt(Xi) + α2
iCf + α2

iCf

= f(Xi)− αigt(Xi) + 2α2
iCf . (7)
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Subtracting f(X∗) on both sides of Inequality (7), and denoting the current
primal error by h(Xi) = f(Xi)− f(X∗), we get

h(Xi+1) ≤ h(Xi)− αigt(Xi) + 2α2
iCf , (8)

which by using the fact that gt(Xi) ≥ h(Xi) gives

h(Xi+1) ≤ h(Xi)− αih(Xi) + 2α2
iCf . (9)

The claim of this theorem is that the primal error h(Xi) = f(Xi) − f(X∗) is
small after a sufficiently large number of iterations. Indeed, we will show by
induction that h(Xi) ≤ 8Cf

i+2 . In the first iteration (i = 0), we know from (9) that
the claim holds, because of the choice of α0 = 1.

Assume now that h(Xi) ≤ 8Cf

i+2 holds. Using αi =
2

i+2 in our inequality (9),
we can now bound h(Xi+1) as follows,

h(Xi+1) ≤ h(Xi)(1− αi) + 2α2
iCf

≤ 8Cf

i+ 2

(
1− 2

i+ 2

)
+

8Cf

(i+ 2)2

≤ 8Cf

i+ 2
− 8Cf

(i + 2)2

≤ 8Cf

i+ 1 + 2
,

which proves the theorem. 
�

Theorem 1 states that after k iterations of Algorithm 1, the approximate solution
is within ε =

8Cf

k+2 of the optimum. However, for our framework of computing
approximate solution paths we need a stronger theorem, namely, we also need
the duality gap to be small. Though this cannot be guaranteed after k iterations,
it can be guaranteed after at most 2k + 1 iterations as the next theorem states
(whose proof follows along the lines of [3]). Note that the theorem does not
guarantee that the solution after 2k + 1 iterations has a small enough duality
gap, but only that the gap is small enough after one of the iterations between k
and 2k+1. In practice one can run the algorithm for 2k+1 iterations and keep
the solution with the smallest duality gap after any iteration.

Theorem 2. After at most 2k + 1 iterations, Algorithm 1 has computed an
approximate solution Xi whose duality gap gt(Xi) is at most

8Cf

k+2 .

Proof. Theorem 1 shows that k iterations suffice for Algorithm 1 to provide an
approximate solution Xk with h(Xk) ≤ 8Cf

k+2 . For the subsequent k+1 iterations

we change Algorithm 1 slightly by fixing the step-length αi to
2

k+2 for all i : k ≤
i ≤ 2k + 1, i.e., we do not decrease the step-size anymore.

For a contradiction assume that gt(Xi) >
8Cf

k+2 for all i : k ≤ i ≤ 2k + 1. As
we have seen in the proof of Theorem 1 (Equation (8)), the bound h(Xi+1) ≤
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h(Xi) − αigt(Xi) + 2α2
iCf in fact holds for any step size αi ∈ [0, 1]. Using our

assumption, we get

h(Xi+1) ≤ h(Xi)− αigt(Xi) + 2α2
iCf

< h(Xi)− 2

k + 2
· 8Cf

k + 2
+ 2Cf

22

(k + 2)2

≤ h(Xi)− 16Cf

(k + 2)2
+

8Cf

(k + 2)2

= h(Xi)− 8Cf

(k + 2)2
.

Since h(Xk) ≤ 8Cf

k+2 and h(Xi) ≥ 0 for all i ≥ 0, we must have that gt(Xi) ≤ 8Cf

k+2
holds after at most k+1 such additional iterations, since otherwise the inequality
from above for h(Xi+1) implies h(X2k+1) < 0, which is a contradiction. 
�
Note that matrix Xi is stored twice in Algorithm 1, once as a low rank factoriza-
tion and once as a sparse matrix. The low rank factorization of Xi is obtained in
the algorithm via Xi =

∑
i βiviv

T
i , where vi is the eigenvector chosen in iteration

i, and βi are the appropriate factors computed via all αi. Collecting all O(1ε )
eigenvectors amounts to O(nε ) time and space in total. The sparse representation
of Xi stores only the N entries of Xi that are necessary for computing f(Xi) and
∇f(Xi). Depending on the application, we often have N � n2, as for instance in
the case of the matrix completion problem (cf. Section 5). The sparse represen-
tation of Xi is computed in a straightforward way from the sparse representation
of Xi−1 and the current sparse representation of viv

T
i , where only the N neces-

sary entries of viv
T
i are computed. Hence, computing the sparse representation

for all Xi amounts to O(N) operations per iteration and O(Nε ) operations in
total.

Furthermore, it is known that the function ApproxEV(M, ε) that computes
an approximate eigenvector with guarantee ε can be implemented using the

Lanczos method that runs in time Õ
(

N
√
L√
ε

)
and returns a valid approximation

with high probability, where N is the number of non-zero entries in the matrix
M ∈ R

n×n and L is a bound on the largest eigenvalue of M , see [11]. Hence, we
can conclude with the following corollary.

Corollary 1. Algorithm 1 computes an approximate solution X for Prob-
lems (5) whose duality gap gt(X) is at most ε, with high probability, and its
running time is in Õ

(
N
ε1.5

)
.

4 Optimizing over the Growing Spectrahedron

We are interested in ε-approximations for Problem (4) for all parameter values
of t ∈ R, t ≥ 0.

Definition 2. The ε-approximation path complexity of Problem (4) is the min-
imum number of sub-intervals over all possible partitions of the parameter range
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t ∈ R, t ≥ 0, such that for each individual sub-interval there is a single solution
of Problem (4) which is an ε-approximation for that entire sub-interval.

The following simple stability lemma is at the core of our discussion and charac-
terizes all parameter values t′ such that a given ε

γ -approximate solution X (for

γ > 1) at t is at least an ε-approximate solution at t′.

Lemma 2. Let X ∈ St be an ε
γ -approximate solution of Problem (4) for some

fixed parameter value t, and for some γ > 1. Then for all t′ ≥ t ∈ R that satisfy

(t′ − t) · λmax (−∇f(X)) ≤ ε
(
1− 1

γ

)
, (10)

the solution X is still an ε-approximation to Problem (4) at the parameter
value t′.

Proof. Any feasible solution X for the problem at parameter t is also a feasible
solution at parameter t′ since St ⊆ St′ . We have to show that

gt′(X) = t′ · λmax (−∇f(X)) +∇f(X) •X ≤ ε.

To do so, we add to Inequality (10) the inequality stating that X is an ε
γ -

approximate solution at value t, i.e.,

t · λmax (−∇f(X)) +∇f(X) •X ≤ ε

γ
,

and obtain
t′ · λmax (−∇f(X)) +∇f(X) •X ≤ ε ,

which is the claimed bound on the duality gap at the parameter value t′. 
�
We assume that the unconstrained minimization problem minX∈Sn×n f(X) has a
bounded solutionX∗. This assumption holds in general for all practical problems
and the applications that we will consider later.

Theorem 3. The path complexity of Problem (4) over the parameter range t ∈
R, t ≥ 0 is in O

(
1
ε

)
.

Proof. From Lemma 2, we obtain intervals of constant ε-approximate solu-

tions, where each interval is of length as least
ε(1− 1

γ )
λmax(−∇f(X)) . Let tmax be the

trace of the optimal solution X∗ to the unconstrained minimization problem
minX∈Sn×n f(X). Then X∗ has a zero duality gap for Problem (4) for all pa-
rameters t ≥ tmax. On the other hand, for t < tmax, we have St ⊆ Stmax and can
therefore bound the number of intervals by

⌈γf

ε

⌉
, where

γf := tmax · max
X∈Stmax

λmax (−∇f(X))
γ

γ − 1

is an absolute constant depending only on the function f , like its Lipschitz
constant. 
�
Lemma 2 immediately suggests a simple algorithm (Algorithm 2) to compute an
ε-approximate solution path for Problem (4). The running time of this algorithm
is by Theorem 3 in O(T (ε)/ε), where T (ε) is the time to compute a single ε-
approximate solution for Problem (4) at a fixed parameter value.
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Algorithm 2. SDP-Path

Input: convex function f, tmin, tmax, ε, γ
Output: ε-approximate solution path for Problem (4).
Set t = tmin.
repeat

Compute approximate solution X = ApproxSDP(f, t, ε/γ).

Update t = t+ ε(1−1/γ)
λmax(−∇f(X))

until t > tmax

5 Applications

5.1 Nuclear Norm Regularized Problems and Matrix Factorization

A nuclear norm regularized problem

min
X∈Rm×n

f(X) + λ‖X‖∗ (11)

for any loss function f in its constrained formulation

min
X∈Rm×n, ‖X‖∗ ≤ t/2

f(X)

is by a straightforward transformation, see [5,9,16], equivalent to the optimiza-
tion problem

minX f̂(X̂)

s.t. X̂ ∈ St
(12)

over the scaled spectrahedron St ⊆ S
(m+n)×(m+n), which is our original problem

(4). Here f̂ is defined using f as

f̂(X̂) = f̂

((
X1X2

XT
2 X3

))
:= f(X2)

for X̂ ∈ S
(m+n)×(m+n), X2 ∈ R

m×n. Observe that this is now a convex problem
whenever the loss function f is convex.

The gradient of the transformed function f̂ is

∇f̂(X̂) =

(
0 ∇f(X)

(∇f(X))T 0

)
, (13)

which is not negative definite because if (v, w)T is an eigenvector of ∇f̂(X̂) for
the eigenvalue λ, then (−v, w)T is an eigenvector for the eigenvalue −λ. We can
now use this gradient in Algorithm 2 to compute the entire regularization path
for Problem (12).

A matrix factorization can be obtained directly from the low-rank represen-
tation of Xi of Algorithm 1.



Optimizing over the Growing Spectrahedron 513

5.2 Matrix Completion

The matrix completion Problem (1) from the introduction is the probably the
most commonly used instance of Problem (11) with the standard squared loss
function

f(X) =
1

2

∑

(i,j)∈Ω

(Xij − Yij)
2. (14)

The gradient of this loss function is

(∇f(X))ij =

{
Xij − Yij : (i, j) ∈ Ω,

0 : otherwise.

Using the notation (A)Ω for the matrix that coincides with A on the indices
Ω and is zero otherwise, ∇f(X) can be written as ∇f(X) = (X − Y )Ω . This

implies that the square gradient matrix ∇f̂(X̂) that we use in our algorithm (see
Equation (13)) is also of this simple form. As this matrix is sparse–it has only
N = |Ω| non-zero entries, storage and approximate eigenvector computations
can be performed much more efficiently than for dense problems. Also note that
the curvature constant Cf̂ that appears in the bound for the running time of

Hazan’s algorithm equals t2 for the squared loss function from Equation (14),
see [9]. Hence, the full regularization path can be computed in time Õ

(
N
ε2.5

)
.

Finally, note that our framework applies to matrix completion problems with
any convex differentiable loss function, such as the smoothed hinge loss or the
standard squared loss, and includes the classical maximum-margin matrix fac-
torization variants [16].

6 Conclusion

We have presented a simple and efficient framework that allows to approximate
solution paths for parameterized semidefinite programs with guarantees. Many
well known regularized matrix factorization and completion problems from ma-
chine learning fit into this framework. Even weighted nuclear norm regularized
convex optimization problems, see e.g., [15], fit into the framework though we
have not shown this here for lack of space. We also have not shown experimen-
tal results, and just want to state here that they support the theory , i.e., the
running time is near linear in the size of the input matrix. Finally, we have also
improved the running time of Hazan’s algorithm by a refined analysis.
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