Skip to main content

Resource Buying Games

  • Conference paper
Algorithms ā€“ ESA 2012 (ESA 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7501))

Included in the following conference series:

Abstract

In resource buying games a set of players jointly buys a subset of a finite resource set E (e.g., machines, edges, or nodes in a digraph). The cost of a resource e depends on the number (or load) of players using e, and has to be paid completely by the players before it becomes available. Each player i needs at least one set of a predefined family \({\mathcal S}_i\subseteq 2^E\) to be available. Thus, resource buying games can be seen as a variant of congestion games in which the load-dependent costs of the resources can be shared arbitrarily among the players. A strategy of player i in resource buying games is a tuple consisting of one of iā€™s desired configurations \(S_i\in{\mathcal S}_i\) together with a payment vector \(p_i\in{\mathbb R}^E_+\) indicating how much i is willing to contribute towards the purchase of the chosen resources. In this paper, we study the existence and computational complexity of pure Nash equilibria (PNE, for short) of resource buying games. In contrast to classical congestion games for which equilibria are guaranteed to exist, the existence of equilibria in resource buying games strongly depends on the underlying structure of the families \({\mathcal S}_i\) and the behavior of the cost functions. We show that for marginally non-increasing cost functions, matroids are exactly the right structure to consider, and that resource buying games with marginally non-decreasing cost functions always admit a PNE.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ackermann, H., Rƶglin, H., Vƶcking, B.: On the impact of combinatorial structure on congestion games. J. ACMĀ 55, 1ā€“25 (2008)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  2. Ackermann, H., Rƶglin, H., Vƶcking, B.: Pure Nash equilibria in player-specific and weighted congestion games. Theor. Comput. Sci.Ā 410(17), 1552ā€“1563 (2009)

    ArticleĀ  MATHĀ  Google ScholarĀ 

  3. Anshelevich, E., Caskurlu, B.: Exact and Approximate Equilibria for Optimal Group Network Formation. In: Fiat, A., Sanders, P. (eds.) ESA 2009. LNCS, vol.Ā 5757, pp. 239ā€“250. Springer, Heidelberg (2009)

    ChapterĀ  Google ScholarĀ 

  4. Anshelevich, E., Caskurlu, B.: Price of Stability in Survivable Network Design. In: Mavronicolas, M., Papadopoulou, V.G. (eds.) SAGT 2009. LNCS, vol.Ā 5814, pp. 208ā€“219. Springer, Heidelberg (2009)

    ChapterĀ  Google ScholarĀ 

  5. Anshelevich, E., Dasgupta, A., Tardos, Ɖ., Wexler, T.: Near-optimal network design with selfish agents. Theory of ComputingĀ 4(1), 77ā€“109 (2008)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  6. Anshelevich, E., Karagiozova, A.: Terminal backup, 3d matching, and covering cubic graphs. SIAM J. Comput.Ā 40(3), 678ā€“708 (2011)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  7. Cardinal, J., Hoefer, M.: Non-cooperative facility location and covering games. Theor. Comput. Sci.Ā 411, 1855ā€“1876 (2010)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  8. Dunkel, J., Schulz, A.: On the complexity of pure-strategy Nash equilibria in congestion and local-effect games. Math. Oper. Res.Ā 33(4), 851ā€“868 (2008)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  9. Epstein, A., Feldman, M., Mansour, Y.: Strong equilibrium in cost sharing connection games. Games Econom. Behav.Ā 67(1), 51ā€“68 (2009)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  10. Fabrikant, A., Papadimitriou, C., Talwar, K.: The complexity of pure Nash equilibria. In: Proc. of the 36th STOC, pp. 604ā€“612 (2004)

    Google ScholarĀ 

  11. Hoefer, M.: Non-cooperative tree creation. AlgorithmicaĀ 53, 104ā€“131 (2009)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  12. Hoefer, M.: Strategic Cooperation in Cost Sharing Games. In: Saberi, A. (ed.) WINE 2010. LNCS, vol.Ā 6484, pp. 258ā€“269. Springer, Heidelberg (2010)

    ChapterĀ  Google ScholarĀ 

  13. Hoefer, M.: Competitive cost sharing with economies of scale. AlgorithmicaĀ 60, 743ā€“765 (2011)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  14. Rosenthal, R.: A class of games possessing pure-strategy Nash equilibria. Internat. J. Game TheoryĀ 2(1), 65ā€“67 (1973)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  15. Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency. Springer (2003)

    Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Harks, T., Peis, B. (2012). Resource Buying Games. In: Epstein, L., Ferragina, P. (eds) Algorithms ā€“ ESA 2012. ESA 2012. Lecture Notes in Computer Science, vol 7501. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33090-2_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33090-2_49

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33089-6

  • Online ISBN: 978-3-642-33090-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics