Skip to main content

Plastic Representation of the Reachable Space for a Humanoid Robot

  • Conference paper
From Animals to Animats 12 (SAB 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7426))

Included in the following conference series:

Abstract

Reaching a target object requires accurate estimation of the object spatial position and its further transformation into a suitable arm-motor command. In this paper, we propose a framework that provides a robot with a capacity to represent its reachable space in an adaptive way. The location of the target is represented implicitly by both the gaze direction and the angles of arm joints. Two paired neural networks are used to compute the direct and inverse transformations between the arm position and the head position. These networks allow reaching the target either through a ballistic movement or through visually-guided actions. Thanks to the latter skill, the robot can adapt its sensorimotor transformations so as to reflect changes in its body configuration. The proposed framework was implemented on the NAO humanoid robot, and our experimental results provide evidences for its adaptative capabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Antonelli, M., Chinellato, E., del Pobil, A.P.: Implicit mapping of the peripersonal space of a humanoid robot. In: IEEE Symposium on Computational Intelligence, Cognitive Algorithms, Mind, and Brain, pp. 1–8 (February 2011)

    Google Scholar 

  2. Caminiti, R., Ferraina, S., Mayer, A.B.: Visuomotor transformations: early cortical mechanisms of reaching. Current Opinion in Neurobiology 8(6), 753–761 (1998)

    Article  Google Scholar 

  3. Chinellato, E., Antonelli, M., Grzyb, B., del Pobil, A.P.: Implicit sensorimotor mapping of the peripersonal space by gazing and reaching. IEEE Transactions on Autonomous Mental Development 3, 45–53 (2011)

    Article  Google Scholar 

  4. Chinellato, E., del Pobil, A.P.: The neuroscience of vision-based grasping: a functional review for computational modeling and bio-inspired robotics. Journal of Integrative Neuroscience 8(2), 223–254 (2009)

    Article  Google Scholar 

  5. Dechent, P., Frahm, J.: Characterization of the human visual V6 complex by functional magnetic resonance imaging. European Journal of Neuroscience 17(10), 2201–2211 (2003)

    Article  Google Scholar 

  6. Fattori, P., Kutz, D., Breveglieri, R., Marzocchi, N., Galletti, C.: Spatial tuning of reaching activity in the medial parieto-occipital cortex (area V6A) of macaque monkey. European Journal of Neuroscience 22(4), 956–972 (2005)

    Article  Google Scholar 

  7. Fuke, S., Ogino, M., Asada, M.: Acquisition of the head-centered peri-personal spatial representation found in vip neuron. IEEE Transactions on Autonomous Mental Development 1(2), 131–140 (2009)

    Article  Google Scholar 

  8. Galletti, C., Kutz, D., Gamberini, M., Breveglieri, R., Fattori, P.: Role of the medial parieto-occipital cortex in the control of reaching and grasping movements. Experimental Brain Research 153(2), 158–170 (2003)

    Article  Google Scholar 

  9. Goodale, M., Westwood, D.: An evolving view of duplex vision: separate but interacting cortical pathways for perception and action. Current Opinion in Neurobiology 14(2), 203–211 (2004)

    Article  Google Scholar 

  10. Jones, M., Vernon, D.: Using neural networks to learn hand-eye co-ordination. Neural Computing and Applications 2(1), 2–12 (1994)

    Article  Google Scholar 

  11. Karaoguz, C., Weisswange, T.H., Rodemann, T., Wrede, B., Rothkopf, C.A.: Reward-based learning of optimal cue integration in audio and visual depth estimation. In: The 15th International Conference on Advanced Robotics, Tallinn, Estonia (2011)

    Google Scholar 

  12. Karayiannis, N.B., Venetsanopoulos, A.N.: Fast learning algorithms for neural networks. IEEE Transactions on Circuits and Systems-II: Analog and Digital Signal Processing 39(7), 1–22 (1992)

    Article  Google Scholar 

  13. Landy, M.S., Maloney, L.T., Johnston, E.B., Young, M.: Measurement and modeling of depth cue combination: in defense of weak fusion. Vision Research 35(3), 389–412 (1995)

    Article  Google Scholar 

  14. Marjanovic, M., Scassellati, B., Williamson, M.: Self-taught visually guided pointing for a humanoid robot. In: From Animals to Animats 4: Proc. Fourth Int l Conf. Simulation of Adaptive Behavior, pp. 35—44 (1996)

    Google Scholar 

  15. Marzocchi, N., Breveglieri, R., Galletti, C., Fattori, P.: Reaching activity in parietal area V6A of macaque: eye influence on arm activity or retinocentric coding of reaching movements? European Journal of Neuroscience 27(3), 775–789 (2008)

    Article  Google Scholar 

  16. Nori, F., Natale, L., Sandini, G., Metta, G.: Autonomous learning of 3d reaching in a humanoid robot. In: IEEE/RSJ IROS, International Conference on Intelligent Robots and Systems, pp. 1142–1147 (2007)

    Google Scholar 

  17. Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Comput. 3(2), 246–257 (1991)

    Article  Google Scholar 

  18. Poggio, T., Girosi, F.: Regularization algorithms for learning that are equivalent to multilayer networks. Science 247(4945), 978–982 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  19. Pouget, A., Sejnowski, T.J.: A new view of hemineglect based on the response properties of parietal neurones. Philosophical Transactions of the Royal Society B: Biological Sciences 352(1360), 1449–1459 (1997)

    Article  Google Scholar 

  20. Salinas, E., Thier, P.: Gain modulation: a major computational principle of the central nervous system. Neuron 27(1), 15–21 (2000)

    Article  Google Scholar 

  21. Sun, G., Scassellati, B.: A fast and efficient model for learning to reach. International Journal of Humanoid Robotics 2(4), 391–414 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Antonelli, M., Grzyb, B.J., Castelló, V., del Pobil, A.P. (2012). Plastic Representation of the Reachable Space for a Humanoid Robot. In: Ziemke, T., Balkenius, C., Hallam, J. (eds) From Animals to Animats 12. SAB 2012. Lecture Notes in Computer Science(), vol 7426. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33093-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33093-3_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33092-6

  • Online ISBN: 978-3-642-33093-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics