Abstract
In this paper, we study Fractal Gene Regulatory Networks (FGRNs) evolved as local controllers for a modular robot in snake topology that reacts adaptively to environment. The task is to have the robot moving in a specific direction until it reaches a randomly placed target-zone and stays there. We point to a characteristic of FGRN model, namely “state-switching property” and demonstrate it as a beneficial property in evolving reactive controllers.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Banzhaf, W.: Artificial regulatory networks and genetic programming. In: Genetic Programming Theory and Practice, pp. 43–62. Kluwer (2003)
Bentley, P.J.: Adaptive fractal gene regulatory networks for robot control. In: Workshop on Regeneration and Learning in Developmental Systems in the Genetic and Evolutionary Computation Conference, GECCO 2004 (2004)
Bentley, P.J.: Fractal proteins. J. Genet. Program Evol. Mach. (5), 71–101 (2004)
Bongard, J.C., Pfeifer, R.: Repeated structure and dissociation of genotypic and phenotypic complexity in artificial ontogeny, pp. 829–836. Morgan Kaufmann (2001)
Eggenberger, P.: Evolving morphologies of simulated 3d organisms based on differential gene expression. In: Proceedings of the Fourth European Conference on Artificial Life, pp. 205–213. MIT Press (1997)
Haasdijk, E., Rusu, A.A., Eiben, A.E.: HyperNEAT for Locomotion Control in Modular Robots. In: Tempesti, G., Tyrrell, A.M., Miller, J.F. (eds.) ICES 2010. LNCS, vol. 6274, pp. 169–180. Springer, Heidelberg (2010)
Hamann, H., Stradner, J., Schmickl, T., Crailsheim, K.: Artificial hormone reaction networks: Towards higher evolvability in evolutionary multi-modular robotics. In: Proc. of the ALife XII Conference, pp. 773–780 (2010)
Harada, K., Corradi, P., Popesku, S., Liedke, J.: Reconfigurable heterogeneous mechanical modules. In: Levi, P., Kernbach, S. (eds.) Symbiotic Multi-Robot Organisms: Reliability, Adaptability, Evolution, Springer (2010)
Krohn, J., Gorse, D.: Fractal Gene Regulatory Networks for Control of Nonlinear Systems. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN XI, Part II. LNCS, vol. 6239, pp. 209–218. Springer, Heidelberg (2010)
Lodish, H., Berk, A., Zipursky, L.S., Matsudaira, P., Baltimore, D., Darnell, J.E.: Molecular Cell Biology, 5th edn. W.H. Freeman and Company, New York (2003)
Manoonpong, P., Pasemann, F., Roth, H.: Modular reactive neurocontrol for biologically-inspired walking machines. The International Journal of Robotics Research 26, 301–331 (2007)
REPLICATOR: Project website (2011), http://www.replicators.eu
Roggen, D., Federici, D.: Multi-cellular Development: Is There Scalability and Robustness to Gain? In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 391–400. Springer, Heidelberg (2004)
Schmickl, T., Hamann, H., Crailsheim, K.: Modelling a hormone-inspired controller for individual- and multi-modular robotic systems. Mathematical and Computer Modelling of Dynamical Systems 17(3), 221–242 (2011)
SYMBRION: Project website (2011), http://www.symbrion.eu
Winkler, L., Wörn, H.: Symbricator3D – A Distributed Simulation Environment for Modular Robots. In: Xie, M., Xiong, Y., Xiong, C., Liu, H., Hu, Z. (eds.) ICIRA 2009. LNCS, vol. 5928, pp. 1266–1277. Springer, Heidelberg (2009)
Zahadat, P., Christensen, D.J., Schultz, U.P., Katebi, S., Stoy, K.: Fractal Gene Regulatory Networks for Robust Locomotion Control of Modular Robots. In: Doncieux, S., Girard, B., Guillot, A., Hallam, J., Meyer, J.-A., Mouret, J.-B. (eds.) SAB 2010. LNCS, vol. 6226, pp. 544–554. Springer, Heidelberg (2010)
Zahadat, P., Katebi, S.D.: Tartarus and fractal gene regulatory networks with inputs. Advances in Complex Systems (ACS) 11(06), 803–829 (2008)
Zahadat, P., Støy, K.: An alternative representation of fractal gene regulatory networks facilitating analysis and interpretation. Annals of Mathematics and Artificial Intelligence (submitted)
Ziemke, T., Thieme, M.: Neuromodulation of Reactive Sensorimotor Mappings as a Short-Term Memory Mechanism in Delayed Response Tasks. Adaptive Behavior 10(3-4), 185–199 (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Zahadat, P., Schmickl, T., Crailsheim, K. (2012). Evolving Reactive Controller for a Modular Robot: Benefits of the Property of State-Switching in Fractal Gene Regulatory Networks. In: Ziemke, T., Balkenius, C., Hallam, J. (eds) From Animals to Animats 12. SAB 2012. Lecture Notes in Computer Science(), vol 7426. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33093-3_21
Download citation
DOI: https://doi.org/10.1007/978-3-642-33093-3_21
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-33092-6
Online ISBN: 978-3-642-33093-3
eBook Packages: Computer ScienceComputer Science (R0)