Skip to main content

A Bio-inspired Model Reliably Predicts the Collision of Approaching Objects under Different Light Conditions

  • Conference paper
From Animals to Animats 12 (SAB 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7426))

Included in the following conference series:

  • 1486 Accesses

Abstract

In this paper, we present a model of the Lobula Giant Movement Detector, which is a part of a visual pathway responsible for triggering collision avoidance manouvres in the locust Locusta Migratoria. Also based on locust neural adaptation to transitions in light intensities, the model proposed here integrates a mechanism for light adaptation. The tests performed with the model demonstrate its ability to reproduce several characteristic properties of the LGMD response, including the firing rate profile for different visual stimuli. Additionally, results obtained for different light conditions show that the increase in the LGMD model efficiency is provided by the new mechanism of light adaptation. In here, the LGMD is presented as an ideal model to develop sensors for automatic collision detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zupanc, G.K.H.: Behavioral Neurobiology: An Integrative Approach. Oxford University Press (2010)

    Google Scholar 

  2. O’Shea, M., Williams, J.L.D.: The anatomy and output connection of a locust visual interneurone; the lobular giant movement detector (LGMD) neuron. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 257–266 (1974)

    Google Scholar 

  3. Chapman, R.F.: The insects: Structure and Function. Hodder and Stoughton, London (1980)

    Google Scholar 

  4. Warrant, E.J.: Seeing better at night: lift style, eye design and the optimum strategy of spatial and temporal summation. Vision Res. 39, 1611–1630 (1999)

    Article  Google Scholar 

  5. Gabbiani, F., Krapp, H., Laurent, G.: Computation of object approach by a wide-field motion-sensitive neuron. J. Neurosci. 19, 1122–1141 (1999)

    Google Scholar 

  6. Gabbiani, F., Mo, C., Laurent, G.: Invariance of Angular Threshold Computation in a Wide-Field Looming-Sensitive Neuron. The Journal of Neuroscience 21(1), 314–329 (2001)

    Google Scholar 

  7. Gabbiani, F., Krapp, H.G., Koch, C., Laurent, G.: Multiplicative computation in a visual neuron sensitive to looming. Nature 420, 320–324 (2002)

    Article  Google Scholar 

  8. Gray, J.R., Lee, J.K., Robertson, R.M.: Activity of descending contralateral movement detector neurons and collision avoidance behaviour in response to head-on visual stimuli in locusts. Journal of Comparative Physiology A, 115–129 (2001)

    Google Scholar 

  9. Rind, F.C.: Non-directional, movement sensitive neurones of the locust optic lobe. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 477–494 (1987)

    Google Scholar 

  10. Guest, B.B., Gray, J.R.: Respones of a looming-sensitive neuron to compound and paired object approaches. Journal of Neurophysiology 95(3), 1428–1441 (2006)

    Article  Google Scholar 

  11. Gray, J.R., Blincow, E., Robertson, R.: A pair motion-sensitive neurons in the locust encode approaches of a looming object. Journal of Comparative Physiology A 196(12), 927–938 (2010)

    Article  Google Scholar 

  12. Rind, F.C., Bramwell, D.I.: Neural Network Based on the Input Organization of an Identified Neuron Signaling Impeding Collision. Journal of Neurophysiology 75(3), 967–985 (1996)

    Google Scholar 

  13. Blanchard, M., Rind, F.C., Verschure, P.F.M.J.: Collision avoidance using a model of the locust LGMD neuron. Robotics and Autonomous Systems 30(1), 17–37 (2000)

    Article  Google Scholar 

  14. Yue, S., Rind, F.C.: Collision detection in complex dynamic scenes using an LGMD-based visual neural network with feature enhancement. IEEE Transactions on Neural Networks 17(3), 705–716 (2006)

    Article  Google Scholar 

  15. Stafford, R., Santer, R.D., Rind, F.C.: A bio-inspired visual collision detection mechanism for cars: combining insect inspired neurons to create a robust system. BioSystems 87, 164–171 (2007)

    Article  Google Scholar 

  16. Meng, H., Yue, S., Hunter, A., Appiah, K., Hobden, M., Priestley, N., Hobden, P., Pettit, C.: A modified neural network model for the Lobula Giant Movement Detector with additional depth movement feature. In: Proceedings of International Joint Conference on Neural Networks, Atlanta, Georgia, pp. 14–19 (2009)

    Google Scholar 

  17. Badia, S.B.I., Bernardet, U., Verschure, P.F.M.J.: Non-Linear Neuronal Responses as an Emergent Property of Afferent Networks: A Case Study of the Locust Lobula Giant Movement Detector. PLoS Comput. Biol. 6(3), e1000701 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Silva, A.C., dos Santos, C.P. (2012). A Bio-inspired Model Reliably Predicts the Collision of Approaching Objects under Different Light Conditions. In: Ziemke, T., Balkenius, C., Hallam, J. (eds) From Animals to Animats 12. SAB 2012. Lecture Notes in Computer Science(), vol 7426. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33093-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33093-3_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33092-6

  • Online ISBN: 978-3-642-33093-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics