Skip to main content

RNA Tree Comparisons via Unrooted Unordered Alignments

  • Conference paper
Algorithms in Bioinformatics (WABI 2012)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 7534))

Included in the following conference series:

Abstract

We generalize some current approaches for RNA tree alignment, which are traditionally confined to ordered rooted mappings, to also consider unordered unrooted mappings. We define the Homeomorphic Subtree Alignment problem, and present a new algorithm which applies to several modes, including global or local, ordered or unordered, and rooted or unrooted tree alignments. Our algorithm generalizes previous algorithms that either solved the problem in an asymmetric manner, or were restricted to the rooted and/or ordered cases. Focusing here on the most general unrooted unordered case, we show that our algorithm has an O(n T n S min (d T , d S )) time complexity, where n T and n S are the number of nodes and d T and d S are the maximum node degrees in the input trees T and S, respectively. This maintains (and slightly improves) the time complexity of previous, less general algorithms for the problem. Supplemental materials, source code, and web-interface for our tool are found in http://www.cs.bgu.ac.il/~negevcb/FRUUT .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andronescu, M., Bereg, V., Hoos, H., Condon, A.: Rna strand: the rna secondary structure and statistical analysis database. BMC Bioinformatics 9, 340 (2008)

    Article  Google Scholar 

  2. Agmon, I., Auerbach, T., Baram, D., Bartels, H., Bashan, A., Berisio, R., Fucini, P., Hansen, H., Harms, J., Kessler, M., et al.: On peptide bond formation, translocation, nascent protein progression and the regulatory properties of ribosomes. European Journal of Biochemistry 270, 2543–2556 (2003)

    Article  Google Scholar 

  3. Hofacker, I., Fontana, W., Stadler, P., Bonhoeffer, L., Tacker, M., Schuster, P.: Fast folding and comparison of RNA secondary structures. Monatshefte fur Chemie/Chemical Monthly 125, 167–188 (1994)

    Article  Google Scholar 

  4. Steffen, P., Voss, B., Rehmsmeier, M., Reeder, J., Giegerich, R.: RNAshapes: an integrated RNA analysis package based on abstract shapes (2006)

    Google Scholar 

  5. Hochsmann, M., Toller, T., Giegerich, R., Kurtz, S.: Local similarity in RNA secondary structures. In: Proceedings of the 2003 IEEE Bioinformatics Conference, CSB 2003, pp. 159–168. IEEE (2003)

    Google Scholar 

  6. Jiang, T., Lin, G., Ma, B., Zhang, K.: A general edit distance between RNA structures. Journal of Computational Biology 9, 371–388 (2002)

    Article  Google Scholar 

  7. Zhang, K., Wang, L., Ma, B.: Computing Similarity between RNA Structures. In: Crochemore, M., Paterson, M. (eds.) CPM 1999. LNCS, vol. 1645, pp. 281–293. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  8. Bille, P.: A survey on tree edit distance and related problems. Theoretical Computer Science 337, 217–239 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Schirmer, S., Giegerich, R.: Forest Alignment with Affine Gaps and Anchors. In: Giancarlo, R., Manzini, G. (eds.) CPM 2011. LNCS, vol. 6661, pp. 104–117. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  10. Allali, J., Sagot, M.-F.: A Multiple Graph Layers Model with Application to RNA Secondary Structures Comparison. In: Consens, M.P., Navarro, G. (eds.) SPIRE 2005. LNCS, vol. 3772, pp. 348–359. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  11. Blin, G., Denise, A., Dulucq, S., Herrbach, C., Touzet, H.: Alignments of RNA structures. IEEE/ACM Transactions on Computational Biology and Bioinformatics 7, 309–322 (2010)

    Article  Google Scholar 

  12. Jan, E.: Divergent ires elements in invertebrates. Virus Research 119, 16–28 (2006)

    Article  Google Scholar 

  13. Perreault, J., Weinberg, Z., Roth, A., Popescu, O., Chartrand, P., Ferbeyre, G., Breaker, R.: Identification of hammerhead ribozymes in all domains of life reveals novel structural variations. PLoS Computational Biology 7, e1002031 (2011)

    Article  Google Scholar 

  14. Birikh, K., Heaton, P., Eckstein, F.: The structure, function and application of the hammerhead ribozyme. European Journal of Biochemistry 245, 1–16 (1997)

    Article  Google Scholar 

  15. Haas, E., Brown, J.: Evolutionary variation in bacterial RNase P RNAs. Nucleic Acids Research 26, 4093–4099 (1998)

    Article  Google Scholar 

  16. Zhang, K., Jiang, T.: Some MAX SNP-hard results concerning unordered labeled trees. Information Processing Letters 49, 249–254 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  17. Shamir, R., Tsur, D.: Faster subtree isomorphism. J. of Algorithms 33, 267–280 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. Chung, M.: O (n2. 5) time algorithms for the subgraph homeomorphism problem on trees. Journal of Algorithms 8, 106–112 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  19. Pinter, R.Y., Rokhlenko, O., Tsur, D., Ziv-Ukelson, M.: Approximate labelled subtree homeomorphism. Journal of Discrete Algorithms 6, 480–496 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Zhang, K.: A constrained edit distance between unordered labeled trees. Algorithmica 15, 205–222 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kao, M., Lam, T., Sung, W., Ting, H.: Cavity matchings, label compressions, and unrooted evolutionary trees. Arxiv preprint cs/0101031 (2001)

    Google Scholar 

  22. Edmonds, J., Karp, R.: Theoretical improvements in algorithmic efficiency for network flow problems. Journal of the ACM (JACM) 19, 248–264 (1972)

    Article  MATH  Google Scholar 

  23. Fredman, M., Tarjan, R.: Fibonacci heaps and their uses in improved network optimization algorithms. Journal of the ACM (JACM) 34, 596–615 (1987)

    Article  MathSciNet  Google Scholar 

  24. Gabow, H., Tarjan, R.: Faster scaling algorithms for network problems. SIAM Journal on Computing 18, 1013 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  25. Orlin, J., Ahuja, R.: New scaling algorithms for the assignment and minimum mean cycle problems. Mathematical Programming 54, 41–56 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  26. Zhang, K.: Algorithms for the constrained editing distance between ordered labeled trees and related problems. Pattern Recognition 28, 463–474 (1995)

    Article  Google Scholar 

  27. Maes, M.: On a cyclic string-to-string correction problem. Information Processing Letters 35, 73–78 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  28. Schmidt, J.P.: All highest scoring paths in weighted grid graphs and their application to finding all approximate repeats in strings. SIAM J. of Computing 27, 972–992 (1998)

    Article  MATH  Google Scholar 

  29. Tiskin, A.: Semi-local string comparison: Algorithmic techniques and applications. Mathematics in Computer Science 1, 571–603 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  30. Hofacker, I.: Vienna RNA secondary structure server. Nucleic Acids Research 31, 3429 (2003)

    Article  Google Scholar 

  31. Pace, N.R., Brown, J.W.: Evolutionary perspective on the structure and function of ribonuclease P, a ribozyme. J. Bacteriol. 177, 1919–1928 (1995)

    Google Scholar 

  32. Brown, J.: The ribonuclease p database. Nucleic acids research 27, 314 (1999)

    Article  Google Scholar 

  33. Andronescu, M., Bereg, V., Hoos, H.H., Condon, A.: RNA STRAND: the RNA secondary structure and statistical analysis database. BMC Bioinformatics 9, 340 (2008)

    Article  Google Scholar 

  34. Höchsmann, M.: The tree alignment model: algorithms, implementations and applications for the analysis of RNA secondary structures. PhD thesis, Universitätsbibliothek Bielefeld (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Milo, N., Zakov, S., Katzenelson, E., Bachmat, E., Dinitz, Y., Ziv-Ukelson, M. (2012). RNA Tree Comparisons via Unrooted Unordered Alignments. In: Raphael, B., Tang, J. (eds) Algorithms in Bioinformatics. WABI 2012. Lecture Notes in Computer Science(), vol 7534. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33122-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33122-0_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33121-3

  • Online ISBN: 978-3-642-33122-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics