Skip to main content

A Simplified View of DCJ-Indel Distance

  • Conference paper
Algorithms in Bioinformatics (WABI 2012)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 7534))

Included in the following conference series:

Abstract

The introduction of the double cut and join (DCJ) operation and the derivation of its associated distance caused a flurry of research into the study of multichromosomal rearrangements. However, little of this work has incorporated indels (i.e., insertions and deletions) into the calculation of genomic distance functions, with a particular exception of Braga et al., who provided a linear time algorithm ([1]) for computing the DCJ-indel distance. Although this algorithm only takes linear time, its derivation is lengthy and depends on a large number of possible cases. In this paper, we provide a simplified indel model that solves the problem of DCJ-indel sorting in linear time directly from the classical breakpoint graph, an approach that allows us to describe the solution space of DCJ-indel sorting, thus resolving an existing open problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Braga, M.D.V., Willing, E., Stoye, J.: Genomic Distance with DCJ and Indels. In: Moulton, V., Singh, M. (eds.) WABI 2010. LNCS, vol. 6293, pp. 90–101. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  2. Dobzhansky, T., Sturtevant, A.H.: Inversions in the chromosomes of drosophila pseudoobscura. Genetics 23(1), 28–64 (1938)

    Google Scholar 

  3. Fertin, G., Labarre, A., Rusu, I., Tannier, E., Vialette, S.: Combinatorics of Genome Rearrangements, pp. 205–206. MIT Press (2009)

    Google Scholar 

  4. Dweighter, H. (pseudonym of Goodman, J.): Problem E2569. American Mathematical Monthly 82, 1010 (1975)

    Google Scholar 

  5. Gates, W.H., Papadimitriou, C.H.: Bounds for sorting by prefix reversal. Discrete Mathematics 27(1), 47–57 (1979)

    Article  MathSciNet  Google Scholar 

  6. Heydari, M.H., Sudborough, I.H.: On the diameter of the pancake network. Journal of Algorithms 25(1), 67–94 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chitturi, B., Fahle, W., Meng, Z., Morales, L., Shields, C.O., Sudborough, I.H., Voit, W.: An upper bound for sorting by prefix reversals. Theoretical Computer Science 410(36), 3372 (2009); Graphs, Games and Computation: Dedicated to Professor Burkhard Monien on the Occasion of his 65th Birthday

    Google Scholar 

  8. Bulteau, L., Fertin, G., Rusu, I.: Pancake flipping is hard. CoRRabs/1111.0434 (preprint)

    Google Scholar 

  9. Yancopoulos, S., Attie, O., Friedberg, R.: Efficient sorting of genomic permutations by translocation, inversion and block interchange. Bioinformatics 21(16), 3340–3346 (2005)

    Article  Google Scholar 

  10. Bergeron, A., Mixtacki, J., Stoye, J.: A Unifying View of Genome Rearrangements. In: Bücher, P., Moret, B.M.E. (eds.) WABI 2006. LNCS (LNBI), vol. 4175, pp. 163–173. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  11. Yancopoulos, S., Friedberg, R.: DCJ path formulation for genome transformations which include insertions, deletions, and duplications. Journal of Computational Biology 16(10), 1311–1338 (2009)

    Article  MathSciNet  Google Scholar 

  12. Bafna, V., Pevzner, P.A.: Genome rearrangements and sorting by reversals. SIAM J. Comput. 25(2), 272–289 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  13. Tannier, E., Zheng, C., Sankoff, D.: Multichromosomal median and halving problems under different genomic distances. BMC Bioinformatics 10(1), 120 (2009)

    Article  Google Scholar 

  14. Ma, J., Ratan, A., Raney, B.J., Suh, B.B., Miller, W., Haussler, D.: The infinite sites model of genome evolution. Proceedings of the National Academy of Sciences of the United States of America 105(38), 14254–14261 (2008)

    Article  Google Scholar 

  15. Braga, M.D.V., Stoye, J.: The solution space of sorting by DCJ. Journal of Computational Biology 17(9), 1145–1165 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Compeau, P.E.C. (2012). A Simplified View of DCJ-Indel Distance. In: Raphael, B., Tang, J. (eds) Algorithms in Bioinformatics. WABI 2012. Lecture Notes in Computer Science(), vol 7534. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33122-0_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33122-0_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33121-3

  • Online ISBN: 978-3-642-33122-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics