Skip to main content

Reducing Problems in Unrooted Tree Compatibility to Restricted Triangulations of Intersection Graphs

  • Conference paper
Algorithms in Bioinformatics (WABI 2012)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 7534))

Included in the following conference series:

Abstract

The compatibility problem is the problem of determining if a set of unrooted trees are compatible, i.e. if there is a supertree that represents all of the trees in the set. This fundamental problem in phylogenetics is NP-complete but fixed-parameter tractable in the number of trees. Recently, Vakati and Fernández-Baca showed how to efficiently reduce the compatibility problem to determining if a specific type of constrained triangulation exists for a non-chordal graph derived from the input trees, mirroring a classic result by Buneman for the closely related Perfect-Phylogeny problem. In this paper, we show a different way of efficiently reducing the compatibility problem to that of determining if another type of constrained triangulation exists for a new non-chordal intersection graph. In addition to its conceptual contribution, such reductions are desirable because of the extensive and continuing literature on graph triangulations, which has been exploited to create algorithms that are efficient in practice for a variety of Perfect-Phylogeny problems. Our reduction allows us to frame the compatibility problem as a minimal triangulation problem (in particular, as a chordal graph sandwich problem) and to frame a maximization variant of the compatibility problem as a minimal triangulation problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bernstein, P.A., Goodman, N.: Power of natural semijoins. SIAM Journal on Computing 10, 751–771 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bodlaender, H.L.: Discovering Treewidth. In: Vojtáš, P., Bieliková, M., Charron-Bost, B., Sýkora, O. (eds.) SOFSEM 2005. LNCS, vol. 3381, pp. 1–16. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  3. Bryant, D., Lagergren, J.: Compatibility of unrooted phylogenetic trees is fpt. Theoretical Computer Science 351(3), 296–302 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Buneman, P.: A characterization of rigid circuit graphs. Discrete Mathematics 9, 205–212 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chandrasekaran, R., Tamir, A.: Polynomially bounded algorithms for locating p-centers on a tree. Mathematical Programming 22(3), 304–315 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fomin, F.V., Villanger, Y.: Subexponential parameterized algorithm for minimum fill-in. In: SODA 2012 Proceedings, pp. 1737–1746 (2012)

    Google Scholar 

  7. Gavril, F.: The intersection graphs of subtrees in trees are exactly the chordal graphs. Journal of Combinatorial Theory 16(1), 47–56 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gavril, F.: Generating the maximum spanning trees of a weighted graph. Journal of Algorithms 8, 592–597 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  9. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Annals of Discrete Mathematics, vol. 57. Elsevier, Amsterdam (2004)

    MATH  Google Scholar 

  10. Gusfield, D.: The multi-state perfect phylogeny problem with missing and removable data. Journal of Computational Biology, 383–399 (2010)

    Google Scholar 

  11. Gysel, R., Gusfield, D.: Extensions and improvements to the chordal graph approach to the multistate perfect phylogeny problem. IEEE/ACM Transactions on Computational Biology and Bioinformatics 8(4), 912–917 (2011)

    Article  Google Scholar 

  12. Gysel, R., Lam, F., Gusfield, D.: Constructing perfect phylogenies and proper triangulations for three-state characters. In: Przytycka and Sagot [16], pp. 104–115

    Google Scholar 

  13. Heggernes, P.: Minimal triangulation of graphs: a survey. Discrete Mathematics 306(3), 297–317 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Heggernes, P., Mancini, F., Nederlof, J., Villanger, Y.: A Parameterized Algorithm for Chordal Sandwich. In: Calamoneri, T., Diaz, J. (eds.) CIAC 2010. LNCS, vol. 6078, pp. 120–130. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  15. Hemminger, R.L., Beineke, L.W.: Line graphs and line digraphs. Academic Press Inc. (1978)

    Google Scholar 

  16. Przytycka, T.M., Sagot, M.-F. (eds.): WABI 2011. LNCS, vol. 6833. Springer, Heidelberg (2011)

    MATH  Google Scholar 

  17. Rose, D.J.: Triangulated graphs and the elimination process. Journal of Mathematical Analysis and Applications 32(3), 597–609 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  18. Semple, C., Steel, M.: Phylogenetics. Oxford Lecture Series in Mathematics and Its Applications. Oxford University Press, Oxford (2003)

    MATH  Google Scholar 

  19. Steel, M.: The complexity of reconstructing trees from qualitative characters and subtrees. Journal of Classification 9(1), 91–116 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  20. Stevens, K., Kirkpatrick, B.: Efficiently solvable perfect phylogeny problems on binary and k-state data with missing values. In: Przytycka and Sagot [16], pp. 282–297

    Google Scholar 

  21. Vakati, S., Fernández-Baca, D.: Graph triangulations and the compatibility of unrooted phylogenetic trees. Applied Mathematics Letters 24(5), 719–723 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Walter, J.R.: Representations of chordal graphs as subtrees of a tree. Journal of Graph Theory 2, 265–267 (1978)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gysel, R., Stevens, K., Gusfield, D. (2012). Reducing Problems in Unrooted Tree Compatibility to Restricted Triangulations of Intersection Graphs. In: Raphael, B., Tang, J. (eds) Algorithms in Bioinformatics. WABI 2012. Lecture Notes in Computer Science(), vol 7534. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33122-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33122-0_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33121-3

  • Online ISBN: 978-3-642-33122-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics