Abstract
Provable security [6] is at the heart of modern cryptography. It advocates a mathematical approach in which the security of new cryptographic constructions is defined rigorously, and provably reduced to one or several assumptions, such as the hardness of a computational problem, or the existence of an ideal functionality. A typical provable security statement is of the form: for all adversary \(\mathcal{A}\) against the cryptographic construction \(\mathcal{S}\), there exists an adversary \(\mathcal{B}\) against a security assumption \(\mathcal{H}\), such that if \(\mathcal{A}\) has a high probability of breaking the scheme \(\mathcal{S}\) in time t, then \(\mathcal{B}\) has a high probability of breaking the assumption \(\mathcal{H}\) in time t′ (defined as a function of t).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Barthe, G., Grégoire, B., Heraud, S., Béguelin, S.Z.: Computer-Aided Security Proofs for the Working Cryptographer. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 71–90. Springer, Heidelberg (2011)
Barthe, G., Grégoire, B., Béguelin, S.Z.: Formal certification of code-based cryptographic proofs. In: 36th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2009, pp. 90–101. ACM, New York (2009)
Barthe, G., Köpf, B., Olmedo, F., Béguelin, S.Z.: Probabilistic reasoning for differential privacy. In: 39th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2012, pp. 97–110. ACM, New York (2012)
Bellare, M., Rogaway, P.: The Security of Triple Encryption and a Framework for Code-Based Game-Playing Proofs. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006)
Deng, Y., Du, W.: Logical, metric, and algorithmic characterisations of probabilistic bisimulation. Technical Report CMU-CS-11-110, Carnegie Mellon University (March 2011)
Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2), 270–299 (1984)
Jonsson, B., Yi, W., Larsen, K.G.: Probabilistic extensions of process algebras. In: Bergstra, J.A., Ponse, A., Smolka, S.A. (eds.) Handbook of Process Algebra, pp. 685–710. Elsevier, Amsterdam (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Barthe, G., Grégoire, B., Zanella Béguelin, S. (2012). Computer-Aided Cryptographic Proofs. In: Miné, A., Schmidt, D. (eds) Static Analysis. SAS 2012. Lecture Notes in Computer Science, vol 7460. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33125-1_1
Download citation
DOI: https://doi.org/10.1007/978-3-642-33125-1_1
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-33124-4
Online ISBN: 978-3-642-33125-1
eBook Packages: Computer ScienceComputer Science (R0)