Skip to main content

A New Level-Set Based Algorithm for Bimodal Depth Segmentation

  • Conference paper
Advanced Concepts for Intelligent Vision Systems (ACIVS 2012)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7517))

  • 1410 Accesses

Abstract

In this paper, a new algorithm for bimodal depth segmentation is presented. The method separates the background and the planar objects of arbitrary shapes lying in a certain height above the background using the information from the stereo image pair (more exactly, the background and the objects may lie on two distinct general planes). The problem is solved as a problem of minimising a functional. A new functional is proposed for this purpose that is based on evaluating the mismatches between the images, which contrasts with the usual approaches that evaluate the matches. We explain the motivation for such an approach. The minimisation is carried out by making use of the Euler-Lagrange equation and the level-set function. The experiments show the promising results on noisy synthetic images as well as on real-life images. An example of the practical application of the method is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alvarez, L., Deriche, R., Weickert, J., Sanchez, J.: Dense disparity map estimation respecting image discontinuities: A PDE and scale-space based approach. Journal of Visual Communication and Image Representation, Special Issue on Partial Differential Equations in Image Processing, Computer Vision and Computer Graphics 13(1/2), 3–21 (2002)

    Google Scholar 

  2. Ben-Ari, R., Sochen, N.: Stereo matching with mumford-shah regularization and occlusion handling. IEEE Trans. Pattern Analysis and Machine Intelligence 32(11), 2071–2084 (2010)

    Article  Google Scholar 

  3. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Trans. Pattern Analysis and Machine Intelligence 23, 1222–1239 (2001)

    Article  Google Scholar 

  4. Chan, T.F., Vese, L.A.: An active contour model without edges. In: International Conference Scale-Space Theories in Computer Vision, pp. 141–151 (1999)

    Google Scholar 

  5. Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. on Image Processing 10(2), 266–277 (2001)

    Article  MATH  Google Scholar 

  6. Chan, T.F., Vese, L.A.: A multiphase level set framework for image segmentation using the Mumford and Shah model. International Journal of Computer Vision 50, 271–293 (2002)

    Article  MATH  Google Scholar 

  7. Cox, I.J., Hingorani, S.L., Rao, S.B., Maggs, B.M.: A maximum likelihood stereo algorithm. Computer Vision and Image Understanding 63, 542–567 (1996)

    Article  Google Scholar 

  8. Deriche, R., Bouvin, C., Faugeras, O.: Level-set approach for stereo. Investigative Image Processing 2942(1), 150–161 (1997)

    Google Scholar 

  9. Deriche, R., Bouvin, C., Faugeras, O.: Front propagation and level-set approach for geodesic active stereovision. In: IEEE Workshop on Visual Surveillance, pp. 56–63 (1998)

    Google Scholar 

  10. Fabián, T.: An algorithm for parking lot occupation detection. In: Proceedings of the 7th Computer Information Systems and Industrial Management Applications, pp. 165–170 (2008)

    Google Scholar 

  11. Faugeras, O., Keriven, R.: Variational principles, surface evolution, pde’s, level set methods and the stereo problem. IEEE Trans. on Image Processing 7, 336–344 (1999)

    Article  MathSciNet  Google Scholar 

  12. Hsu, C.Y., Yang, C.H., Wang, H.C.: Topological control of level set method depending on topology constraints. Pattern Recognition Letters 66, 537–546 (2008)

    Article  Google Scholar 

  13. Klaus, A., Sormann, M., Karner, K.F.: Segment-based stereo matching using belief propagation and a self-adapting dissimilarity measure. In: Proceedings of the 17th International Conference on Pattern Recognition, vol. 3, pp. 15–18 (2006)

    Google Scholar 

  14. Kolmogorov, V., Zabih, R.: Computing visual correspondence with occlusions using graph cuts. In: Proceedings of the IEEE International Conference on Computer Vision, vol. 2, pp. 508–515 (2001)

    Google Scholar 

  15. Leventon, M.E., Grimson, W.E.L., Faugeras, O., Wells, W.: Level set based segmentation with intensity and curvature priors. In: Proceedings of the IEEE Workshop on Mathematical Methods in Biomedical Image Analysis, pp. 4–11 (2000)

    Google Scholar 

  16. Malladi, R., Sethian, J.A., Vemuri, B.C.: Shape modeling with front propagation: A level set approach. IEEE Trans. Pattern Analysis and Machine Intelligence 17, 158–175 (1995)

    Article  Google Scholar 

  17. Nikolova, M., Esedoglu, S., Chan, T.F.: Algorithms for finding global minimizers of image segmentation and denoising models. SIAM Journal of Applied Mathematics 66(5), 1632–1648 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ohta, Y., Kanade, T.: Stereo by intra- and inter-scanline search using dynamic programming. IEEE Trans. Pattern Analysis and Machine Intelligence 7(1), 139–154 (1985)

    Article  Google Scholar 

  19. Osher, S., Sethian, J.: Fronts propagating with curvature-dependent speed: algorithms based on the Hamilton-Jacobi formulation. Journal of Computational Physics 79, 12–49 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  20. Rousson, M., Paragios, N.: Prior Knowledge, Level Set Representations & Visual Grouping. International Journal of Computer Vision 76(3), 231–243 (2008)

    Article  Google Scholar 

  21. Sojka, E., Gaura, J., Krumnikl, M.: Active Contours without Edges and with Simple Shape Priors. In: Blanc-Talon, J., Bourennane, S., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2008. LNCS, vol. 5259, pp. 730–741. Springer, Heidelberg (2008), http://dx.doi.org/10.1007/978-3-540-88458-3_66

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Krumnikl, M., Sojka, E., Gaura, J. (2012). A New Level-Set Based Algorithm for Bimodal Depth Segmentation. In: Blanc-Talon, J., Philips, W., Popescu, D., Scheunders, P., Zemčík, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2012. Lecture Notes in Computer Science, vol 7517. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33140-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33140-4_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33139-8

  • Online ISBN: 978-3-642-33140-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics