Abstract
As a non-invasive biometric method, face recognition in surveillance is a very challenging problem because of the concurrence of conditions, such as under the variable illumination with uncontrolled pose and movement in low-resolution of subject. In this paper, we present a robust human face recognition system for surveillance. Unlike traditional recognition system which detect face region directly, we use a Cascade Head-Shoulder Detector (CHSD) and a trained human body model to find the face region in an image. To recognize human face, an efficient feature, Overlapping Local Phase Feature (OLPF), is proposed, which is robust to pose and blurring without adversely affecting discrimination performance. To describe the variations of faces, Adaptive Gaussian Mixture Model (AGMM) is proposed which can describe the distributions of the face images. Since AGMM does not need the topology of face, the proposed method is resistant to the face detection errors caused by wrong or no alignment. Experimental results demonstrate the robustness of our method on public dataset as well as real data from surveillance camera.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Cox, J., Ghosn, J., Yianilos, P.N.: Feature-Based Face Recognition Using Mixture-Distance. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition, pp. 209–216 (1996)
Turk, M., Pentland, A.: Eigenfaces for Recognition. Journal of Cognitive Neuroscience, 71–86 (1991)
Turk, M., Pentland, A.: Face Recognition Using Eigenfaces. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition, pp. 586–591 (1991)
Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs. Fisherfaces: Recognition using Class Specific Linear Projection. IEEE Trans. Pattern Anal. Mach. Intell., 711–721 (1997)
He, X., Yan, S., Hu, Y., Niyogi, P., Zhang, H.J.: Face Recognition using Laplacianfaces. IEEE Trans. Pattern Anal. Mach. Intell., 328–340 (2005)
Kim, J., Choi, J., Yi, J., Turk, M.: Effective Representation using ICA for Face Recognition Robust to Local Distortion and Partial Occlusion. IEEE Trans. Pattern Anal. Mach. Intell., 1977–1981 (2005)
Zhao, W., Chellappa, R., Rosenfeld, A., Phillips, P.J.: Face Recognition: A Literature Survey. ACM Computing Surveys, 399–458 (2003)
Wright, J., Hua, G.: Implicit Elastic Matching with Random Projections for Pose-Variant Face Recognition. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition (2009)
Dreuw, P., Steingrube, P., Hanselmann, H., Ney, H.: SURF Face: Face Recognition under Viewpoint Consistency Constraints. In: British Machine Vision Conference (September 2009)
Wolf, L., Hassner, T., Taigman, Y.: Descriptor based Methods in the Wild. In: Proc. ECCV (2008)
Ruiz-del-Solar, J., Verschae, R., Correa, M.: Recognition of Faces in Unconstrained Environments: A Comparative Study. EURASIP Journal on Advances in Signal Processing, 1–20 (2009)
Zou, J., Ji, Q., Nagy, G.: A Comparative Study of Local Matching Approach for Face Recognition. IEEE Transactions on Image Processing, 2617–2628 (2007)
Tan, X., Triggs, B.: Fusing Gabor and LBP Feature Sets for Kernel-Based Face Recognition. Analysis and Modeling of Faces and Gestures, 235–249 (2007)
Bay, H., Tuytelaars, T., Gool, L.V.: Surf: Speeded up Robust Features. LNCS, p. 404 (2006)
Lowe, D.G.: Distinctive Image Features from Scale-Invariant Keypoints. Int. J. Comput. Vision, 91–110 (2004)
Bicego, M., Lagorio, A., Grosso, E., Tistarelli, M.: On the Use of SIFT Features for Face Authentication. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition Workshop (2006)
Albiol, A., Monzo, D., Martin, A., Sastre, J., Albiol, A.: Face Recognition using HOG-EBGM. Pattern Recogn. Lett., 1537–1543 (2008)
Ahonen, T., Hadid, A., Peitikaimen, M.: Face Description with Local Binary Patterns: Application to Face Recognition. IEEE Trans. Pattern Anal. Mach. Intell., 2037–2041 (2006)
Ojala, T., Pietikainen, M., Maenpaa, T.: Gray Scale and Rotation Invariant Texture Classification with Local Binary Patterns. LNCS, pp. 404–420 (2000)
Gupta, M.D., Rajaram, S., Petrovic, N., Huang, T.S.: Restoration and Recognition in A Loop. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition, pp. 638–644 (2005)
Hennings-Yeomans, P.H., Baker, S., Kumar, B.V.K.V.: Simultaneous Super-resolution and Feature Extraction for Recognition of Low-resolution Faces. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition, pp. 1–8 (2008)
Nishiyama, M., Takeshima, H., Shotton, J., Kozakaya, T., Yamaguchi, O.: Facial Deblur Inference to Improve Recognition of Blurred Faces. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition, pp. 1115–1122 (2009)
Wright, J., Yang, A.Y., Ganesh, A., Sastry, S.S., Ma, Y.: Robust Face Recognition via Sparse Representation. IEEE Trans. Pattern Anal. Mach. Intell., 210–227 (2008)
Viola, P., Jones, M.: Robust Real-time Face Detection. In: International Conference on Computer Vision (2001)
Rodriguez, Y., Cardinaux, F., Bengio, S., Mariéthoz, J.: Measuring the Performance of Face Localization Systems. Image and Vision Computing, 882–893 (2006)
Dala, N., Triggs, B.: Histograms of Oriented Gradients for Human Detection. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition (2005)
Dollar, P., Wojek, C., Schiele, B., Perona, P.: Pedestrian Detection: An Evaluation of the State of art. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition, pp. 743–761 (2011)
Li, H., Ngan, K.N., Liu, Q.: FaceSeg: Automatic Face Segmentation for Real-time Video. IEEE Transactions on Multimedia, 77–88 (2009)
Zhu, Q., Yeh, M., Cheng, K., Avidan, S.: Fast Human Detection Using a Cascading of Histograms of Oriented Gradients. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition, pp. 1491–1498 (2006)
Zhang, C., Zhang, Z.: A Survey of Recent Advances in Face Detection. Microsoft Research Technical Report, MSR-TR-2010-66 (2010)
Fang, Y., Luo, J., Lou, C.: Fusion of Multi-directional Rotation Invariant Uniform LBP Features for Face Recognition. In: Third International Symposium on Intelligent Information Technology Application, pp. 332–335 (2009)
Ojala, T., Pietikainen, M., Maenpaa, T.: Multi-resolution Gray-scale and Rotation Invariant Texture Classification with Local Binary Patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence, 971–987 (2002)
Ojansivu, V., Heikkilä, J.: Blur Insensitive Texture Classification Using Local Phase Quantization. In: Proc. Image and Signal Processing, pp. 236–243 (2008)
Phillips, P.J., Grother, P., Micheals, R., Blackburn, D.M., Tabassi, E., Bone, M.: Face Recognition Vendor Test 2002. In: IEEE International Workshop on Analysis and Modeling of Faces and Gestures (2003)
Sanderson, C., Bengio, S., Gao, Y.: On Transforming Statistical Models for Non-frontal Face Verification. Journal Pattern Recognition (February 2006)
Shan, T., Lovell, B.C., Chen, S.: Face Recognition Robust to Head Pose from One Sample Image. In: 18th International Conference on Pattern Recognition, pp. 515–518 (2006)
Sanderson, C., Shang, T., Lovell, B.C.: Towards Pose-Invariant 2D Face Classification for Surveillance. In: Proc. of the 3rd International Conference on Analysis and Modeling of Faces and Gestures (2007)
Cardinaux, F., Sanderson, C., Bengio, S.: User Authentication via Adapted Statistical Models of Face Images. IEEE Trans. on Signal Processing, 361–373 (2006)
Sanderson, C., Lovell, B.C.: Multi-Region Probabilistic Histograms for Robust and Scalable Identity Inference. In: International Conference on Biometrics, pp. 199–208 (2009)
Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum Likelihood from Incomplete Data via the EM Algorithm. J. R. Stat. Soc. Ser., 1–38 (1977)
Grgic, M., Delac, K., Grgic, S.: SCface - Surveillance Cameras Face Database. Multimedia Tools and Applications Journal, 863–879 (2011)
Zhen, L., Ahonen, T., Pietikainen, M., Li, S.Z.: Local Frequency Descriptor for Low-resolution Face Recognition. In: Automatic Face & Gesture Recognition and Workshops, pp. 161–166 (2011)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Liu, Q., Ngan, K.N. (2012). Overlapping Local Phase Feature (OLPF) for Robust Face Recognition in Surveillance. In: Blanc-Talon, J., Philips, W., Popescu, D., Scheunders, P., Zemčík, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2012. Lecture Notes in Computer Science, vol 7517. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33140-4_22
Download citation
DOI: https://doi.org/10.1007/978-3-642-33140-4_22
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-33139-8
Online ISBN: 978-3-642-33140-4
eBook Packages: Computer ScienceComputer Science (R0)