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Abstract. A fast algorithm for similarity registration for shapes with various 
topologies is put forward in this paper. Fourier transform and Geometric mo-
ments are explored here to calculate the rotation, scaling and translation para-
meters to register two shapes by minimizing a dissimilarity measure introduced 
in the literature. Shapes are represented by signed distance functions. In com-
parison with the algorithms in the literature, the algorithm proposed here de-
monstrates superior performance for the registration of two shapes with various 
topologies as well as two shapes, each containing various and different numbers 
of shape components. The registration process using this algorithm is robust in 
comparison with the shape registration algorithms in the literature and is as fast 
as a couple of FFTs. 

1 Introduction 

Shape registration may be regarded as the result of a point-wise transformation be-
tween a reference and an observed shape [2]-[3]. Registration algorithms established 
on matching contour points (contour-based) are cited in the literature due to their fast 
convergence (e.g. see [5], [6], and [7]). The very fact though that such algorithms rely 
on contour points only (require point correspondence) makes these methods vulnera-
ble to topological changes in shapes. More recent work tends towards using SDF 
(SDF-based) (e.g. see [1], [4], [8] and [9]). These SDF-based algorithms usually mi-
nimize the distance between the SDFs iteratively for instance by using a gradient 
descent algorithm. The SDF-based shape registration methods (for example the se-
minal work in [1]) are in general capable of dealing with shapes that have various 
Euler characteristic numbers (various topologies). However, as the complexity of 
shapes increases, the possibility of convergence to local minima becomes more likely. 
These methods are somewhat slow and sometimes lack stability due to their iterative 
nature. Also, the implementation is slightly difficult to manage because there is no 
unique method for a universal stopping criterion that is applicable for every case (see 
[4] for more details). The algorithm proposed in this paper however is fast, reliable, 
robust to local minima problem and can perform registration successfully between 
shapes with various topologies. The paper is organized as follows: The registration 
problem is stated in section 2. The proposed algorithm is presented in section 3. Im-
portant considerations noted for implementation are discussed in section 4. The algo-
rithm is evaluated in section 5, and finally the paper concludes in section 6. 
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2 The Statement of the Problem 

The signed distance function (SDF) of a shape p is defined as:  
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where Ω  is the bounded domain, DE stands for the minimum Euclidean distance 
between the perimeter B of the shape p and any point in domain Ω, and Ip is the sub-
set of Ω  representing the interior of the shape [1]. Registration between two shapes 
aims to retrieve transform parameters s , θ , xT  and yT  (scaling, rotation, and transla-

tions along x  and y  axes respectively) minimizing a dissimilarity measure between 

pφ  and qφ  introduced in [1] and given in (2), 
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where Ω , yx TTs ˆ,ˆ,ˆ,θ̂  and Rθ are image domain, the estimated angle, scale, translation 

parameters, and a conventional rotation (transform) matrix respectively, 
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3 Registration Method 

The minimization of dissimilarity measure (2) with respect to the desired parameters 
can be directly and iteratively implemented as demonstrated in [1]. Such an imple-
mentation is slow, unreliable (may fall into local minima), and difficult to tune [4]-
[11]. The algorithm presented here on the other hand, suggests linear methods to es-
timate the registration parameters minimizing the dissimilarity measure in (2).  

3.1 Rotation 

For simplicity, let the objective function in (2) be a function of onlyθ : 

( )( )
Ω

−= dxdyyxRyxE qp

2
,),( θθ φφ                         (4) 

Rotation in Cartesian coordinates is equivalent to displacement of the angular compo-
nent in polar coordinates [10].  
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Shapes p and q are initially centered at the origin of the coordinate system. Centra-
lized shapes are then mapped to polar coordinates i.e., ( )ωρφ ,ˆ

p  and ( )ωρφ ,ˆ
q  such 

that ωρ cos=x and ωρ sin=y . In theorem 1, we prove that the rotation angle mini-

mizing term (5) minimizes term (4): 
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Theorem 1: The rotation angle minimizing term (5) is the minimizer of term (4) 
where 2R=Ω . 

The proof is presented in the appendix. We use the result obtained from theorem 1 to 
propose an algorithm to estimate the desired rotation angleθ . To this end, let us de-

note pφ a normalized instance of pφ̂ : 
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Also, let β  be the scale factor ( β is a function of the desirable rotation angle (θ) 

between q
ˆ and φφ p , i.e., ( ) ( )( )  +==
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The desirable rotation angle is estimated by minimizing the dissimilarity term θE  

between 
q̂ and ˆ φφ p
 in (5): 
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Since the first two terms in (8) are independent of θ, the minimization of θE  is 

equivalent to the maximization of β , i.e., the optimal rotation θ̂  is estimated by max-

imizing β . 

The Fourier transform is employed here to compute the local maxima of β . Let the 

Fourier transform of qφ̂  and pφ  be ( )21,ˆ ξξψ q  and ( )21,ξξψ p  respectively, such that, 
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According to Parseval's theorem, expression (11) holds, 
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where ( )∗  denotes the complex conjugate.  

Hence, from (11), θ̂  is estimated as in (12), 
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3.2 Scale 

Dissimilarity measure (2) is minimized with respect to s to compute the relative scale 
between the two given shapes. This measure is expressed in (13) in terms of s for the 
sake of simplicity: 
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where the relation between two shapes’ SDFs which have different scales is known to 
be: 
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where pφ̂  and qφ̂ are the centralized versions of pφ  and qφ . In theorem 2, we prove 

that the scaling parameter s minimizing the following term is a minimizer of term 
(13): 
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where p
mnM and q

mnM  are respectively the (m + n)th order geometrical moments of 

),(ˆ yxpφ  and ),(ˆ yxqφ  defined as: 
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Theorem 2: The scaling parameter minimizing term (13) is also the minimizer of 
term (15). 
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The proof is presented in the appendix. This distance term given in (15) is not linear 
with respect to s . By using a change of variable, (15) is linearized with respect 
to ss logˆ = , 
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Therefore, s minimizing sE ′ , is computed as: 
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3.3 Translation 

The scale and rotation information computed previously in sections 3.1 and 3.2 are 
used to fix the scaling and rotation discrepancies between shapes. For translation 
parameters only, term (2) thus reduces to Eq.(18), 
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A similar approach to that employed in 3.1 is used here to estimate translation para-
meters. Let pφ  denote a normalized version of pφ , that is: 
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By using a similar argument as the one employed in section 3.1, the translation para-
meters are calculated as: 
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where 
xT̂ , yT̂  ( )yxq λλψ , , ( )yxp λλψ , , 

yx λλ  , and * represent the estimated optimal 

translation parameters, 2D Fourier transform of qφ  and
pφ , spatial frequencies and 

complex conjugate respectively. 

4 Implementation Issues  

W notice that the theorems proved in this paper, indicate that the transformation pa-
rameters can be calculated by using a linear method. It is therefore important to note  
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that this linearity is not an assumption and therefore it is applicable to general cases. 
The employment of continuous Fourier transform in the computation of the rotation 
and translation is not numerically tractable. Fast Fourier transform (FFT) is employed 
instead in this paper. Accordingly, the definition of SDFs is modified to accommodate 
the periodicity property associated with FFT: Let Ω  be the shape domain. This do-
main is partitioned by the shape perimeter into two regions, the shape interior I  and 
the background, and let +ℜ→Ω:φ  be a Lipschitz function as defined in (21): 
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where ED , as mentioned earlier, stands for the minimum Euclidean distance between 

shape perimeter B and any point inside the shape.  
Registration parameters are computed in the following order: rotation, scaling and fi-

nally translation. Observed shapes are fixed accordingly after computing each parameter. 
In the case of scale it is important to remove the variance in shapes due to differences in 
translation (by centralizing the shapes) and rotation since these variances affect the com-
puted moments. A Matlab® (version 7) implementation code of the algorithm proposed in 
this paper is available: at http://users.ecs.soton.ac.uk/sm3/SDFShapeRegistration.zip. The 
practical limitation of this approach is that it may fall into local minima, because dissimi-
larity measure (2) is also associated with the local minima. The last but not the least issue 
is that the order in which the registration parameters are calculated does not change the 
final result.   

5 Results  

The proposed algorithm is evaluated by using a set of problems to address issues 
common to shapes. In the subsequent examples the moments up to the tenth order (up 
to m = n = 5) are used to compute the scale parameter s presented in section 3.2. In-
deed, the higher the number of moments is, the more accurately s is estimated and the 
more expensive the algorithm becomes.  

 

 

(a)                 (b)                  (c)                   (d) 

Fig. 1. Registration of shapes with different topologies (size=300 X 300). (a) initial shapes, (b) 
registration by using the contour-based method in [6], (c) registration by using the SDF-based 
method in [1] (d) registration by using the approach proposed here. 
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(a) (b) (c) (d)

Fig. 2. Registration of shapes with different topologies (size = 300 X 300). (a) initial shapes, 
(b) registration by using the contour-based method in [6], (c) registration by using the SDF-
based method in [1] (d) registration by using the approach proposed here. 

For the sake of comparison, the results of the proposed technique are compared to 
those utilized by two well-established shape registration algorithms. The first uses 
contours for representing shapes, (e.g. see [6]) referred here as the contour-based 
method. The other algorithm used here for comparison is based on SDFs (see [1] for 
more details) and referred here as the SDF-based method. For better visualization, the 
boundaries of the shapes rather than the SDFs are used in all figures in this paper. 
Contours of the reference shapes are presented in red, and those of the observed 
shapes are shown in green. The first experiment investigates the impact of topological 
difference on the registration outcomes. In Figure (1-a), the reference shape is an 
open number 4 with Euler number unity. The observed shape is a closed number 4 
with Euler number zero. The registration by using the contour-based method in [6] 
shown in Figure (1-b) is not satisfactory; the two shapes are completely misaligned 
here. A similar example is shown in Figure (2-a), the shapes of the two characters 
have different topologies. In this example, we refer to the results of applying the 
SDF-based registration algorithm in [1] to this problem. Figure (2-c) shows a typical 
case of the local minima issue usually attributed to the iterative procedure of the work 
presented in [1]. Figures (1-d) and (2-d) on the other hand demonstrate that in both 
cases the shapes are aligned optimally by using the approach proposed here. This 
robustness can be due to the fact that the algorithm proposed here employs regions 
(SDF) rather than boundaries to find the optimal values for registration.  

 

(a) (b) (c) (d)

Fig. 3. Registration of clocks with different number of components (size = 300 X 300), (a) an 
initial state, and (b) registration of (a) by using contour-based technique in [6], (c) registration 
of (a) by using the SDF-based algorithm in [1], and (d) registration of (a) by using the algo-
rithm proposed here 

 



606 S. Mahmoodi, M.S. Al-Huseiny, and M.S. Nixon 

The next experiment concerns the registration of two complex shapes containing 
multiple simple shapes (components). The contour-based method in [6] requires point 
correspondence of the contours. Since the number of components in the two shapes in 
question (see Figure (3-a)) is different for each shape, the parts with no corresponding 
counterparts remain untouched. For the sake of comparison, these shapes are treated 
here as a single entity and registered directly by using the method proposed by the 
authors in [6]. Figure (3-b) depicts the meaningless alignment by using the contour-
based algorithm caused primarily by the lack of contour points’ correspondence. The 
algorithm in [1] on the other hand due to the use of SDFs is capable of handling com-
plex shapes. However, the increased complexity increases the tendency towards stop-
ping at local minima (see figure (3-c)). The results shown by the example in Figure 
(4) are also consistent with the previous analysis. In either case the algorithm pro-
posed here possesses the capacity to register the shapes quickly and accurately as 
depicted in Figures (3-d), and (4-d). Our algorithm proposed here is as fast as a couple 
of FFT operations; however the iterative SDF based algorithm may take a long time 
to converge, depending on the complexity and size of the shapes.  

             

(a)                                  (b) 

                 

(c)                                 (d) 

Fig. 4. Registration of words with various number of letters (size = 300 X 300), (a) original 
shapes (b) registration by using contour-based algorithm in [6], (c) registration by using SDF-
based algorithm in [1]. (d) registration by using algorithm presented here. 

6 Conclusion 

This paper presents a fast reliable shape registration algorithm. It employs implicit 
representation of shapes by using signed distance functions (SDFs). The desirable 
parameters are calculated by minimizing a dissimilarity measure between two shapes. 
To achieve that, linear orthogonal transformations are employed to minimize the dis-
similarity measures. This technique is based on spectral phase correlation and geome-
tric moments to compute registration parameters individually. A modified signed 
distance function definition is adopted here to satisfy the requirements of the optimi-
zation strategy used in this context. The proposed approach is tested satisfactorily on 
problems such as complex shapes and shapes with various topologies. These shapes 
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prove difficult to register by using contour based methods. This work is also  
examined in comparison with a SDF based iterative registration algorithm in the  
literature. The evaluation data demonstrate the reliability, stability and speed of  
convergence of the proposed registration algorithm. The registration technique pre-
sented in this paper is as fast as a couple of FFTs.  For the future work, this algorithm 
can be developed to account for 3D shape registration problems 

7 Appendix  

Proof of Theorem 1: 
Dissimilarity measure (4) can be written in polar coordinate system, i.e.: 
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where ρ and ω  are polar coordinates so that ωρ cos=x , and ωρ sin=y . 

In a polar coordinate system, term (A-1) can be written as: 
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It is easy to see from (A-1) and (A-2) that a parameter θ̂  minimizing 
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Proof of Theorem 2: 
Before proving theorem 2, we need to visit theorem 3: 

Theorem 3: Let a geometrical moment with orders m and n of signed distance func-
tion (SDF) Ryxq →Ω :),(φ  be q
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By changing the variables sxX = and syY = , equation (A-4) is rewritten as: 
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Proof of theorem 2: The signed distance functions ),( yxpφ  and ),( yxqφ  can be ap-

proximated in terms of their geometrical moments, i.e.:  
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equation (13), by using the result of theorem 3, one can obtain: 
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Without loss of generality, for [ ] ],0[,0 HL ×=Ω , 
sE  in (A-8) can be calculated as: 
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It is easy to conclude from (A-9) that 
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