Abstract
In this paper we propose a novel fast method for implicit surface reconstruction from unorganized point clouds. Our algorithm employs a multigrid solver on a narrow band of the level set function that represents the reconstructed surface, which greatly improves computational efficiency of surface reconstruction. The new model can accurately reconstruct surfaces from noisy unorganized point clouds that also have missing information.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Rogers, D.F.: An Introduction to NURBS. Morgan Kaufmann (2003)
Piegl, L., Tiller, W.: The NURBS book. Springer, Berlin (1996)
Amenta, N., Bern, M., Eppstein, D.: The crust and the β-skeleton: Combinatorial curve reconstruction. Graphical Models and Image Processing 60, 125–135 (1998)
Amenta, N., Bern, M., Kamvysselis, M.: A new Voronoi-based surface reconstruction algorithm. In: Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques, pp. 415–421. ACM, New York (1998)
Boissonnat, J.D.: Geometric structures for three dimensional shape reconstruction. ACM Trans. Graphics 3, 266–286 (1984)
Edelsbrunner, H.: Shape Reconstruction with Delaunay Complex. In: Lucchesi, C.L., Moura, A.V. (eds.) LATIN 1998. LNCS, vol. 1380, pp. 119–132. Springer, Heidelberg (1998)
Edelsbrunner, H., Mucke, E.P.: Three dimensional α shapes. ACM Trans. Graphics 13, 43–72 (1994)
Osher, S., Fedkiw, R.P.: Level set methods and dynamic implicit surfaces. Springer (2003)
Leung, S., Zhao, H.: A grid based particle method for moving interface problems. Journal of Computational Physics 228, 2993–3024 (2009)
Ruuth, S., Merriman, B.: A simple embedding method for solving partial differential equations on surfaces. Journal of Computational Physics (2007)
Carr, J.C., Fright, W.R., Beatson, R.K.: Surface interpolation with radial basis functions for medical imaging. IEEE Transactions on Medical Imaging 16, 96–107 (1997)
Zhao, H.K., Osher, S., Fedkiw, R.: Fast surface reconstruction using the level set method. In: Proceedings of the IEEE Workshop on Variational and Level Set Methods in Computer Vision 2001, pp. 194–201. IEEE (2002)
Zhao, H.K., Osher, S., Merriman, B., Kang, M.: Implicit and non-parametric shape reconstruction from unorganized points using variational level set method. Computer Vision and Image Understanding 80, 295–319 (2000)
Goldstein, T., Bresson, X., Osher, S.: Geometric applications of the split bregman method: Segmentation and surface reconstruction. Journal of Scientific Computing 45, 272–293 (2010)
Ye, J., Bresson, X., Goldstein, T., Osher, S.: A Fast Variational Method for Surface Reconstruction from Sets of Scattered Points. CAM Report 10-01 (2010)
Gandlin, R.: Multigrid solvers for inverse problems. Ph.D. thesis, Department of Computer Science and Applied Mathematics, The Weizmann Institute of Science, Rehovot, Israel (2004)
Zhao, H.: A fast sweeping method for eikonal equations. Mathematics of Computation 74, 603–628 (2005)
Tsai, Y., Cheng, L., Osher, S., Zhao, H.: Fast sweeping algorithms for a class of Hamilton-Jacobi equations. SIAM Journal on Numerical Analysis 41, 673–694 (2004)
Brandt, A.: Multigrid techniques. Ges. für Mathematik u. Datenverarbeitung (1984)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ye, J., Yanovsky, I., Dong, B., Gandlin, R., Brandt, A., Osher, S. (2012). Multigrid Narrow Band Surface Reconstruction via Level Set Functions. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2012. Lecture Notes in Computer Science, vol 7431. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33179-4_7
Download citation
DOI: https://doi.org/10.1007/978-3-642-33179-4_7
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-33178-7
Online ISBN: 978-3-642-33179-4
eBook Packages: Computer ScienceComputer Science (R0)