Skip to main content

Ontology-Based Information and Event Extraction for Business Intelligence

  • Conference paper
Artificial Intelligence: Methodology, Systems, and Applications (AIMSA 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7557))

Abstract

We would like to introduce BEECON, an information and event extraction system for business intelligence. This is the first ontology-based system for business documents analysis that is able to detect 41 different types of business events from unstructured sources of information. The described system is intended to enhance business intelligence efficiency by automatically extracting relevant content such as business entities and events. In order to achieve it, we use natural language processing techniques, pattern recognition algorithms and hand-written detection rules. In our test set consisting of 190 documents with 550 events, the system achieved 95% precision and 67% recall in detecting all supported business event types from newspaper texts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Agichtein, E., Gravano, L.: Snowball: extracting relations from large plain-text collections. In: Proceedings of the Fifth ACM Conference on Digital libraries (DL 2000), pp. 85–94. ACM, New York (2000)

    Chapter  Google Scholar 

  • Antoniou, G., van Harmelen, F.: A Semantic Web Primer, 2nd edn. The MIT Press, Cambridge (2008)

    Google Scholar 

  • Appelt, D., Hobbs, J., Bear, J., Israel, D., Kamayama, M., Tyson, M.: SRI: description of the JVFASTUS system used for MUC-5. In: Proceedings of MUC 1993, Baltimore, Maryland, USA (1993)

    Google Scholar 

  • Bizer, C., Lehmann, J., Kobilarov, G., Auer, S., Becker, C., Cyganiak, R., Hellmann, S.: DBpedia - A crystallization point for the Web of Data. Web Semantics: Science, Services and Agents on the World Wide Web 7(3), 155–165 (2009)

    Article  Google Scholar 

  • Buitelaar, P., Olejnik, D., Sintek, M.: A Protégé Plug-In for Ontology Extraction from Text Based on Linguistic Analysis. In: Bussler, C.J., Davies, J., Fensel, D., Studer, R. (eds.) ESWS 2004. LNCS, vol. 3053, pp. 31–44. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  • Cimiano, P., Völker, J.: Text2Onto -A Framework for Ontology Learning and Data-driven Change Discovery. In: Montoyo, A., MuÅ„oz, R., Métais, E. (eds.) NLDB 2005. LNCS, vol. 3513, pp. 227–238. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  • Cunningham, H., Maynard, D., Tablan, V.: JAPE: a Java Annotation Patterns Engine, 2nd edn. Technical Report, CS-00-10, University of Sheffield, Department of Computer Science (2000)

    Google Scholar 

  • Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V.: GATE: A Framework and Graphical Development Environment for Robust NLP Tools and Applications. In: Proceedings of the 40th Anniversary Meeting of the Association for Computational Linguistics, Philadelphia, PA, USA (2002)

    Google Scholar 

  • Damljanovic, D., Tablan, V., Bontcheva, K.: A Text-based Query Interface to OWL Ontologies. In: Proceedings of the 6th Language Resources and Evaluation Conference, Marrakech, Morocco (2008)

    Google Scholar 

  • Hahn, R., Bizer, C., Sahnwaldt, C., Herta, C., Robinson, S., Bürgle, M., Düwiger, H., Scheel, U.: Faceted Wikipedia Search. In: Abramowicz, W., Tolksdorf, R. (eds.) BIS 2010. LNBIP, vol. 47, pp. 1–11. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  • Maynard, D., Funk, A., Peters, W.: SPRAT: a tool for automatic semantic pattern based ontology population. In: International Conference for Digital Libraries and the Semantic Web, Trento, Italy (2009)

    Google Scholar 

  • Maynard, D., Saggion, H., Yankova, M., Bontcheva, K., Peters, W.: Natural Language Technology for Information Integration in Business Intelligence. In: Abramowicz, W. (ed.) BIS 2007. LNCS, vol. 4439, pp. 366–380. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  • Maynard, D., Yankova, M., Kourakis, A., Kokossis, A.: Ontology-based information extraction for market monitoring and technology watch. In: Proceedings of the European Semantic Web Conference, End User Aspects of the Semantic Web Workshop, Heraklion, Crete, Greece (2005)

    Google Scholar 

  • Mikroyannidis, A., Theodoulidis, B., Persidis, A.: PARMENIDES: towards business intelligence discovery from web data. In: Proceedings of the IEEE/WIC/ACM International Conference on Web Intelligence, Washington, DC, USA (2007)

    Google Scholar 

  • Nakashole, N., Theobald, M., Weikum, G.: Find your advisor: robust knowledge gathering from the web. In: Proceedings of the 13th International Workshop on the Web and Databases. ACM, New York (2010)

    Google Scholar 

  • Navigli, R., Velardi, P., Cucchiarelli, A., Neri, F., Cucchiarelli, R.: Extending and Enriching WordNet with OntoLearn. In: Proceedings of The Second Global World Net Conference, Brno, Czech Republic (2004)

    Google Scholar 

  • OWL Web Ontology Language (2004), http://www.w3.org/TR/owl2-overview (retrieved October 10, 2011)

  • Vargas-Vera, M., Moreale, E., Stutt, A., Motta, E., Ciravegna, F.: MnM: semi-automatic ontology population from text. In: Ontologies: A Handbook of Principles, Concepts and Applications in Information Systems. Integrated Series in Information Systems, vol. (14), pp. 373–402. Springer Science + Business Media, LLC, New York (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Arendarenko, E., Kakkonen, T. (2012). Ontology-Based Information and Event Extraction for Business Intelligence. In: Ramsay, A., Agre, G. (eds) Artificial Intelligence: Methodology, Systems, and Applications. AIMSA 2012. Lecture Notes in Computer Science(), vol 7557. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33185-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33185-5_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33184-8

  • Online ISBN: 978-3-642-33185-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics