Skip to main content

Local Alignment of Gradient Features for Face Sketch Recognition

  • Conference paper
Advances in Visual Computing (ISVC 2012)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7432))

Included in the following conference series:

  • 2823 Accesses

Abstract

Automatic recognition of face sketches is a challenging problem. It has application in forensics. An artist drawn sketch based on the descriptions from the witnesses can be used as the test image to recognize a person from the photo database of suspects. In this paper, we propose a novel method for face sketch recognition. We use the edge features of a face sketch and face photo image to create a feature string called ’edge-string’. The edge-strings of the face photo and face sketch are then compared using the Smith-Waterman algorithm for local alignments. The results on CUHK (Chinese University of Hong Kong) student dataset show the effectiveness of the proposed approach in face sketch recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kanade, T.: Picture Processing by Computer Complex and Recognition of Human Faces, Technical report, Dept. Information Science, Kyoto Univ. (1973)

    Google Scholar 

  2. Brunelli, R., Poggio, T.: Face Recognition: Features versus Templates. IEEE Transactions on Pattern Analysis and Machine Intelligence 15, 1042–1052 (1993)

    Article  Google Scholar 

  3. Gao, Y., Leung, M.K.H.: Face recognition using line edge map. IEEE Transactions on Pattern Analysis And Machine Intelligence 24(6), 764–779 (2002)

    Article  Google Scholar 

  4. Takács, B.: Comparing face images using the modified Hausdorff distance. Pattern Recognition 31, 1873–1881 (1998)

    Article  Google Scholar 

  5. Gao, Y., Leung, M.K.H.: Human face profile recognition using attributed string. Pattern Recognition 35, 353–360 (2002)

    Article  MATH  Google Scholar 

  6. Chen, W., Gao, Y.: Recognizing partially occluded faces from a single sample per class using string-based matching. In: Proceedings of the European Conference on Computer Vision, vol. 3, pp. 496–509 (2010)

    Google Scholar 

  7. van der Helm, P.A., Leeuwenberg, E.L.J.: Accessibility: a criterion for regularity and hierarchy in visual pattern codes. Journal of Mathematical Psychology 35, 151–213 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chechile, R.A., Anderson, J.E., Krafczek, S.A., Coley, S.L.: A syntactic complexity effect with visual patterns: evidence for the syntactic nature of the memory representation. Journal of Experimental Psychology: Learning, Memory, and Cognition 22, 654–669 (1996)

    Article  Google Scholar 

  9. Fu, K.S.: Syntactic pattern recognition and applications. Prentice-Hall, Englewood Cliffs (1982)

    MATH  Google Scholar 

  10. Bunke, H.: Structural and syntactic pattern recognition. In: Chen, C.H., Pau, L.F., Wang, P.S.P. (eds.) Handbook of Pattern Recognition and Computer Vision, pp. 163–209. World Scientific Publishing Company, Singapore (1994)

    Google Scholar 

  11. Tang, X., Wang, X.: Face Photo Recognition Using Sketch. Proceedings of IEEE International Conference on Image Processing 1, 257–260 (2002)

    Article  Google Scholar 

  12. Tang, X., Wang, X.: Face Sketch Recognition. IEEE Transactions on Circuits and Systems for Video Technology (CSVT), Special Issue on Image- and Video- Based Biometrics 14(1), 50–57 (2004)

    Google Scholar 

  13. Wang, X., Tang, X.: Face Photo-Sketch Synthesis and Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 31, 1955–1967 (2009)

    Article  Google Scholar 

  14. Zhang, W., Wang, X., Tang, X.: Coupled Information-Theoretic Encoding for Face Photo-Sketch Recognition. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 513–520 (2011)

    Google Scholar 

  15. Canny, J.: A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 8, 679–698 (1986)

    Article  Google Scholar 

  16. Otsu, N.: A threshold selection method from gray-level histogram. IEEE Transactions on System, Man and Cybernetics SMC-9(1), 62–66 (1979)

    Google Scholar 

  17. Huo, Y., Wei, G., Zhang, Y., Wu, L.: An adaptive threshold for the Canny Operator of edge detection, iccsee. In: International Conference on Image Analysis and Signal Processing, pp. 371–374 (2010)

    Google Scholar 

  18. Smith, T.F., Waterman, M.S.: Identification of common molecular subsequences. Journal of Molecular Biology 147, 195–197 (1981)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Alex, A.T., Asari, V.K., Mathew, A. (2012). Local Alignment of Gradient Features for Face Sketch Recognition. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2012. Lecture Notes in Computer Science, vol 7432. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33191-6_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33191-6_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33190-9

  • Online ISBN: 978-3-642-33191-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics