Abstract
Gender recognition from facial images plays an important role in biometric applications. We investigated Dyadic wavelet Transform (DyWT) and Local Binary Pattern (LBP) for gender recognition in this paper. DyWT is a multi-scale image transformation technique that decomposes an image into a number of subbands which separate the features at different scales. On the other hand, LBP is a texture descriptor and represents the local information in a better way. Also, DyWT is a kind of translation invariant wavelet transform that has better potential for detection than DWT (Discrete Wavelet Transform). Employing both DyWT and LBP, we propose a new technique of face representation that performs better for gender recognition. DyWT is based on spline wavelets, we investigated a number of spline wavelets for finding the best spline wavelets for gender recognition. Through a large number of experiments performed on FERET database, we report the best combination of parameters for DyWT and LBP that results in maximum accuracy. The proposed system outperforms the stat-of-the-art gender recognition approaches; it achieves a recognition rate of 99.25% on FERET database.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Golom, A., Lawrence, D.T., Sejnowski, T.J.: SEXNET: A neural network identifies gender from human faces, Advances in Neural Information Processing Systems, 572–577 (1991)
Edelman, B., Valentin, D., Adbi, H.: Sex classification of face areas: how well can a linear neural network predict human performance. Journal of Biological System 6(3), 241–264 (1998)
Sun, Z.: Genetic feature subset selection for gender classification: a comparison study. In: Proc. IEEE Conference on Applications of Computer Vision, pp. 165–170 (2009)
Gutta, S., Wechsler, H., Phillips, P.: Gender and ethnic classification of face images. In: Third IEEE International Conference on Automatic Face and Gesture Recognition (FG 1998), pp. 194–199 (1998)
Phillips, P.J., Hyeonjoon, M., Rizvi, S.A., Rauss, P.J.: The FERET evaluation methodology for face-recognition algorithms. In: IEEE Trans. Pattern Analysis and Machine Intelligence, 22nd edn., pp. 1090–1104 (October 2000)
Moghaddam, B., Yang, M.-H.: Gender classification with support vector machines. In: Proc. IEEE International Conference on Automatic Face and Gesture Recognition, pp. 306–311 (March 2000)
Nakano, M., Yasukata, F., Fukumi, M.: Age and gender classification from face images using neural networks. Proc. of Signal and Image Processing (2004)
Lu, X., Chen, H., Jain, A.K.: Multimodal Facial Gender and Ethnicity Identification. In: Zhang, D., Jain, A.K. (eds.) ICB 2005. LNCS, vol. 3832, pp. 554–561. Springer, Heidelberg (2005)
Yang, Z., Li, M., Ai, H.: An experimental study on automatic face gender classification. In: Proc. IEEE Int. Conf. on Pattern Recognition, pp. 1099–1102 (2006)
Kim, H.-C., et al.: Appearance based gender classification with Gaussian processes. Pattern Recognition Letters 27(6), 618–626 (2006)
Baluja, S., Rowley, H.: Boosting sex identification performance. International Journal of Computer Vision 71(1), 111–119 (2007)
Lu, L., Shi, P.: Fusion of multiple facial regions for expression-invariant gender classification. IEICE Electron. Exp. 6(10), 587–593 (2009)
Alexandre, L.A.: Gender recognition: A multiscale decision fusion approach. Pattern Recognition Letters 31, 1422–1427 (2010)
Ojala, T., Pietkainen, M., Maenpaa, T.: Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns. IEEE Trans. Pattern Analysis and Machine Intelligence 24(7), 971–987 (2002)
Turghunjan Abdukirim, M., Hussain, K.: The Dyadic Lifting Schemes and the Denoising of Digital Images. International Journal of Wavelets, Multiresolution and Information Processing 6(3), 331–351 (2008)
Ojala, T., Pietkainen, M., Harwood, D.: A Comparative Study of Texture Measures with Classification Based on Feature Distributions. Pattern Recognition 29, 51–59 (1996)
Zhang, G., Huang, X., Li, S.Z., Wang, Y., Wu, X.: Boosting Local Binary Pattern (LBP)-Based Face Recognition. In: Li, S.Z., Lai, J.-H., Tan, T., Feng, G.-C., Wang, Y. (eds.) SINOBIOMETRICS 2004. LNCS, vol. 3338, pp. 179–186. Springer, Heidelberg (2004)
Ojala, T., et al.: Performance evaluation of texture measures with classification based on Kullback discrimination of distributions. In: Proceedings of the 12th IAPR, International Conference on Pattern Recognition (ICPR 1994), vol. 1, pp. 582–585 (1994)
Liu, H., Sun, J., Liu, L., Zhang, H.: Feature selection with dynamic mutual information. Journal of Pattern Recognition 42(7) (July 2009)
Meng, J., Gao, Y., Wang, X., Lin, T., Zhang, J.: Face Recognition based on Local Binary Patterns with Threshold. IEEE (2010), doi:10.1109/GrC.2010.72
Sun, N., Zheng, W., Sun, C., Zou, C.-r., Zhao, L.: Gender Classification Based on Boosting Local Binary Pattern. In: Wang, J., Yi, Z., Żurada, J.M., Lu, B.-L., Yin, H. (eds.) ISNN 2006. LNCS, vol. 3972, pp. 194–201. Springer, Heidelberg (2006)
Sun, Y., Todorovic, S., Goodison, S.: Local Learning Based Feature Selection for High Dimensional Data Analysis. IEEE Trans. on Pattern Analysis and Machine Intelligence 32(9), 1610–1626 (2010)
Zang, J., Lu, B.L.: A support vector machine classifier with automatic confidence and its application to gender classification. Neurocomputing 74, 1926–1935 (2011)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ullah, I., Hussain, M., Aboalsamh, H., Muhammad, G., Mirza, A.M., Bebis, G. (2012). Gender Recognition from Face Images with Dyadic Wavelet Transform and Local Binary Pattern. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2012. Lecture Notes in Computer Science, vol 7432. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33191-6_40
Download citation
DOI: https://doi.org/10.1007/978-3-642-33191-6_40
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-33190-9
Online ISBN: 978-3-642-33191-6
eBook Packages: Computer ScienceComputer Science (R0)