Skip to main content

Gender Recognition from Face Images with Dyadic Wavelet Transform and Local Binary Pattern

  • Conference paper
Advances in Visual Computing (ISVC 2012)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7432))

Included in the following conference series:

  • 2998 Accesses

Abstract

Gender recognition from facial images plays an important role in biometric applications. We investigated Dyadic wavelet Transform (DyWT) and Local Binary Pattern (LBP) for gender recognition in this paper. DyWT is a multi-scale image transformation technique that decomposes an image into a number of subbands which separate the features at different scales. On the other hand, LBP is a texture descriptor and represents the local information in a better way. Also, DyWT is a kind of translation invariant wavelet transform that has better potential for detection than DWT (Discrete Wavelet Transform). Employing both DyWT and LBP, we propose a new technique of face representation that performs better for gender recognition. DyWT is based on spline wavelets, we investigated a number of spline wavelets for finding the best spline wavelets for gender recognition. Through a large number of experiments performed on FERET database, we report the best combination of parameters for DyWT and LBP that results in maximum accuracy. The proposed system outperforms the stat-of-the-art gender recognition approaches; it achieves a recognition rate of 99.25% on FERET database.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Golom, A., Lawrence, D.T., Sejnowski, T.J.: SEXNET: A neural network identifies gender from human faces, Advances in Neural Information Processing Systems, 572–577 (1991)

    Google Scholar 

  2. Edelman, B., Valentin, D., Adbi, H.: Sex classification of face areas: how well can a linear neural network predict human performance. Journal of Biological System 6(3), 241–264 (1998)

    Article  Google Scholar 

  3. Sun, Z.: Genetic feature subset selection for gender classification: a comparison study. In: Proc. IEEE Conference on Applications of Computer Vision, pp. 165–170 (2009)

    Google Scholar 

  4. Gutta, S., Wechsler, H., Phillips, P.: Gender and ethnic classification of face images. In: Third IEEE International Conference on Automatic Face and Gesture Recognition (FG 1998), pp. 194–199 (1998)

    Google Scholar 

  5. Phillips, P.J., Hyeonjoon, M., Rizvi, S.A., Rauss, P.J.: The FERET evaluation methodology for face-recognition algorithms. In: IEEE Trans. Pattern Analysis and Machine Intelligence, 22nd edn., pp. 1090–1104 (October 2000)

    Google Scholar 

  6. Moghaddam, B., Yang, M.-H.: Gender classification with support vector machines. In: Proc. IEEE International Conference on Automatic Face and Gesture Recognition, pp. 306–311 (March 2000)

    Google Scholar 

  7. Nakano, M., Yasukata, F., Fukumi, M.: Age and gender classification from face images using neural networks. Proc. of Signal and Image Processing (2004)

    Google Scholar 

  8. Lu, X., Chen, H., Jain, A.K.: Multimodal Facial Gender and Ethnicity Identification. In: Zhang, D., Jain, A.K. (eds.) ICB 2005. LNCS, vol. 3832, pp. 554–561. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  9. Yang, Z., Li, M., Ai, H.: An experimental study on automatic face gender classification. In: Proc. IEEE Int. Conf. on Pattern Recognition, pp. 1099–1102 (2006)

    Google Scholar 

  10. Kim, H.-C., et al.: Appearance based gender classification with Gaussian processes. Pattern Recognition Letters 27(6), 618–626 (2006)

    Article  Google Scholar 

  11. Baluja, S., Rowley, H.: Boosting sex identification performance. International Journal of Computer Vision 71(1), 111–119 (2007)

    Article  Google Scholar 

  12. Lu, L., Shi, P.: Fusion of multiple facial regions for expression-invariant gender classification. IEICE Electron. Exp. 6(10), 587–593 (2009)

    Article  Google Scholar 

  13. Alexandre, L.A.: Gender recognition: A multiscale decision fusion approach. Pattern Recognition Letters 31, 1422–1427 (2010)

    Article  Google Scholar 

  14. Ojala, T., Pietkainen, M., Maenpaa, T.: Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns. IEEE Trans. Pattern Analysis and Machine Intelligence 24(7), 971–987 (2002)

    Article  Google Scholar 

  15. Turghunjan Abdukirim, M., Hussain, K.: The Dyadic Lifting Schemes and the Denoising of Digital Images. International Journal of Wavelets, Multiresolution and Information Processing 6(3), 331–351 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ojala, T., Pietkainen, M., Harwood, D.: A Comparative Study of Texture Measures with Classification Based on Feature Distributions. Pattern Recognition 29, 51–59 (1996)

    Article  Google Scholar 

  17. Zhang, G., Huang, X., Li, S.Z., Wang, Y., Wu, X.: Boosting Local Binary Pattern (LBP)-Based Face Recognition. In: Li, S.Z., Lai, J.-H., Tan, T., Feng, G.-C., Wang, Y. (eds.) SINOBIOMETRICS 2004. LNCS, vol. 3338, pp. 179–186. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  18. Ojala, T., et al.: Performance evaluation of texture measures with classification based on Kullback discrimination of distributions. In: Proceedings of the 12th IAPR, International Conference on Pattern Recognition (ICPR 1994), vol. 1, pp. 582–585 (1994)

    Google Scholar 

  19. Liu, H., Sun, J., Liu, L., Zhang, H.: Feature selection with dynamic mutual information. Journal of Pattern Recognition 42(7) (July 2009)

    Google Scholar 

  20. Meng, J., Gao, Y., Wang, X., Lin, T., Zhang, J.: Face Recognition based on Local Binary Patterns with Threshold. IEEE (2010), doi:10.1109/GrC.2010.72

    Google Scholar 

  21. Sun, N., Zheng, W., Sun, C., Zou, C.-r., Zhao, L.: Gender Classification Based on Boosting Local Binary Pattern. In: Wang, J., Yi, Z., Å»urada, J.M., Lu, B.-L., Yin, H. (eds.) ISNN 2006. LNCS, vol. 3972, pp. 194–201. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  22. Sun, Y., Todorovic, S., Goodison, S.: Local Learning Based Feature Selection for High Dimensional Data Analysis. IEEE Trans. on Pattern Analysis and Machine Intelligence 32(9), 1610–1626 (2010)

    Article  Google Scholar 

  23. Zang, J., Lu, B.L.: A support vector machine classifier with automatic confidence and its application to gender classification. Neurocomputing 74, 1926–1935 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ullah, I., Hussain, M., Aboalsamh, H., Muhammad, G., Mirza, A.M., Bebis, G. (2012). Gender Recognition from Face Images with Dyadic Wavelet Transform and Local Binary Pattern. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2012. Lecture Notes in Computer Science, vol 7432. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33191-6_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33191-6_40

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33190-9

  • Online ISBN: 978-3-642-33191-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics