Skip to main content

Mass Detection in Digital Mammograms Using Optimized Gabor Filter Bank

  • Conference paper
Advances in Visual Computing (ISVC 2012)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7432))

Included in the following conference series:

  • 2869 Accesses

Abstract

Breast cancer is the second major type of cancer that causes mortality among women. This can be reduced if the cancer is detected at its early stage but the existing methods result in a large number of false positives/negatives. Detection of masses is more challenging. A new method for mass detection is proposed that uses textural properties of masses. A Gabor filter bank is used for this purpose. The decision of how many Gabor filters must be there in the bank and the selection of the appropriate parameters of each individual Gabor filter is critical. Particle swarm optimization (PSO) and a clustering technique are used to design and select the optimal Gabor filter bank. Support vector machine (SVM) is used as an application oriented fitness criteria. The empirical evaluation of the method over 512 ROIs from DDSM database depicts that it yields better performance (99.41%) than the traditional Gabor filter bank and other state-of-the-art methods that exploit texture properties of masses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Altekruse, S.F., Kosary, C.L., Krapcho, M., et al.: SEER Cancer Statistics Review, pp. 1975–2007. National Cancer Institute, Bethesda (2010)

    Google Scholar 

  2. Yufeng, Z.: Breast Cancer Detection with Gabor Features from Digital Mammograms. Algorithms 3(1), 44–62 (2010)

    Article  Google Scholar 

  3. Lladó, X., Oliver, A., Freixenet, J., Martí, R., Martí, J.: A textural approach for mass false positive reduction in mammography. Comp. Medical Imag. and Graph. 33(6), 415–422 (2009)

    Article  Google Scholar 

  4. Esteve, J., Kricker, A., Ferlay, J., Parkin, D.: Facts and figures of cancer in the European Community. Tech. rep., International Agency for Research on Cancer (1993)

    Google Scholar 

  5. Mohamed, M.E., Ibrahima, F., Brahim, B.S.: Breast cancer diagnosis in digital mammogram using multiscale curvelet transform, Comp. Medical Imag. and Graph. 34(4), 269–276 (2010)

    Article  Google Scholar 

  6. Zehan, S., George, B., Ronald, M.: On-road Vehicle Detection Using Evolutionary Gabor Filter Optimization. IEEE Trans. on Intell. Transp. System 6(2), 125–137 (2005)

    Article  Google Scholar 

  7. Ville, K., Joni-Kristian, K.: Simple Gabor feature space for invariant object recognition. Pattern Recognition Letter 25(3), 311–318 (2004)

    Article  Google Scholar 

  8. Manjunath, B., Ma, W.: Texture features for browsing and retrieval of image data. IEEE Tran. on Pattern Analysis and Machine Intelligence 18(8), 837–842 (1996)

    Article  Google Scholar 

  9. Peter, K., Nikolay, P.: Nonlinear Operator for Oriented Texture. IEEE Tran. on I. Proc. 8(10), 1395–1407 (1999)

    Google Scholar 

  10. Daugman, J.G.: Two-dimensional spectral analysis of cortical receptive field profiles. Vis. Res. 20, 847–856 (1980)

    Article  Google Scholar 

  11. Zehan, S., George, B., Ronald, M.: Monocular Precrash Vehicle Detection: Features and Classifiers. IEEE Trans. on Image Proc. 15(7), 2019–2034 (2006)

    Article  Google Scholar 

  12. Yu, S., Shiguan, S., Xilin, C., Wen, G.: Hierarchical Ensemble of Global and Local Classifiers for Face Recognition. IEEE Trans. on Image Proc. 18(8), 1885–1896 (2009)

    Article  Google Scholar 

  13. Eberhartand, R.C., Kennedy, J.: Particle Swarm Optimization. In: Proc. of IEEE International Conference on Neural Networks, pp. 1942–1948 (1995)

    Google Scholar 

  14. Vapnik, V.: Statistical Learning Theory. Springer, New York (1995)

    MATH  Google Scholar 

  15. Heath, M., Bowyer, K., Kopans, D., Moore, R., Kegelmeyer, P.J.: The digital database for screening mammography. Int. Work. Dig. Mamm., 212–218 (2000)

    Google Scholar 

  16. Hsu, C.W., Chang, C.C., Lin, C.J.: A Practical Guide to Support Vector Classification, Technical report, Department of Computer Science and Information Engineering, National Taiwan University (2010)

    Google Scholar 

  17. Hussain, M., Khan, N.: Automatic mass detection in mammograms using multiscale spatial weber local descriptor. In: Proc. IWSSIP 2012, Austria, April 11-13 (to appear, 2012)

    Google Scholar 

  18. Lladó, X., Oliver, A., Freixenet, J., Martí, R., Martí, J.: A textural approach for mass false positive reduction in mammography. Computerized Medical Imaging and Graphics 33(6), 415–422 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hussain, M., Khan, S., Muhammad, G., Bebis, G. (2012). Mass Detection in Digital Mammograms Using Optimized Gabor Filter Bank. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2012. Lecture Notes in Computer Science, vol 7432. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33191-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33191-6_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33190-9

  • Online ISBN: 978-3-642-33191-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics