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Abstract. Erroneous examples are an instructional technique that hold promise 
to help children learn. In the study reported in this paper, sixth and seventh 
grade math students were presented with erroneous examples of decimal 
problems and were asked to explain and correct those examples. The problems 
were presented as interactive exercises on the Internet, with feedback provided 
on correctness of the student explanations and corrections. A second (control) 
group of students were given problems to solve, also with feedback on 
correctness. With over 100 students per condition, an erroneous example effect 
was found: students who worked with the interactive erroneous examples did 
significantly better than the problem solving students on a delayed posttest. 
While this finding is highly encouraging, our ultimate research question is this: 
how can erroneous examples be adaptively presented to students, targeted at 
their most deeply held misconceptions, to best leverage their effectiveness? 
This paper discusses how the results of the present study will lead us to an 
adaptive version of the erroneous examples material.  
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1 Introduction 

An instructional technique that has recently drawn attention from learning science 
researchers is erroneous examples. An erroneous example is a step-by-step 
description of how to solve a problem in which one or more of the steps are incorrect. 
Students can be challenged to find the error(s), explain the error(s), and/or fix the 
error(s) in order to more deeply learn the domain content and develop metacognitive 
skills. However, the use of erroneous examples for learning is controversial. On the 
one hand, some teachers fear that presenting errors to students will make them more 
inclined to make those errors [1], which is an idea supported by behaviorist theory



 

 223 

 [2]. On the other hand, some educators have argued that presenting students with 
errors for review and discussion can be valuable for learning. For instance, Borasi [3] 
has argued that mathematics education might benefit from students working with 
errors, encouraging critical thinking about mathematical concepts and motivating 
reflection and inquiry. 

Our view is that erroneous examples are likely to be helpful to students under three 
basic conditions. First, the errors should be fictitious examples of other students’ 
errors, so the student reviewing the errors is freed from embarrassment – and possible 
demotivation – of having their own errors exposed. Furthermore, no other real student 
is put on the spot in front of classmates. Second, the erroneous examples should be 
interactive and engaging; in particular, they should be computer-based materials that 
prompt for explanations, ask students to find and correct errors, and provide feedback. 
Finally, the erroneous examples should be adaptively targeted to the particular needs 
of individual students. That is, the types of problems presented to students should be 
aimed at their most deeply held misconceptions and misunderstandings about the 
target domain. 

In short, our hypothesis is that the erroneous examples, presented to students in an 
interactive and adaptive fashion (e.g., presenting examples when a student is ready, 
withholding when not), can provide the opportunity to find and reflect upon errors in 
a manner that will lead to deeper, more robust learning. In this paper we present the 
results of a study that shows that interactive erroneous examples of others can provide 
learning benefits. Furthermore, we present some data and ideas regarding the next 
step of our research; that is, making the erroneous examples adaptive to student needs. 

2 The Potential of Erroneous Examples for Learning 

Research on erroneous examples derives from work on correct worked examples, 
which has attracted much attention in learning science empirical research [4, 5, 6, 7, 
8]. Much research has also shown the importance of prompted self-explanation of 
worked examples, particularly in multi-media learning environments [9]. The theory 
behind the worked examples effect is that human working memory, which has a 
limited capacity, is taxed by strictly solving problems, which requires focused 
thinking, such as setting subgoals. Problem solving consumes cognitive resources that 
could be better used for learning [10]. The rationale is that worked examples free 
cognitive resources for learning, in particular, for the induction of new knowledge. 

Erroneous examples also appear to free working memory for learning, by 
providing much of what students need to understand and solve problems, but, at the 
same time, may engage students in a different form of active learning. It appears that 
erroneous examples may help students become better at evaluating and justifying 
solution procedures, which, in turn, may help them learn material at a deeper level.  
Learning with erroneous examples may also be related to the notion of “learning by 
teaching”, as students who find, correct, and explain errors assume a role akin to 
teaching or tutoring [11]. 
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Some researchers have begun to investigate empirically the use of erroneous 
examples, attempting to better understand whether, how, and when they make a 
difference to learning.  For instance, Siegler [12] investigated whether self-explaining 
correct and incorrect examples of mathematical equality were more beneficial than 
self-explaining correct examples only. He found that students who studied and self-
explained both correct and incorrect examples led to the best learning outcomes. 
Grosse and Renkl [13] studied whether explaining both correct and incorrect 
examples made a difference to university students as they learned statistics. Their 
studies also showed learning benefits of erroneous examples but unlike the less 
ambiguous Siegler results, the benefit was only for learners with higher prior 
knowledge and for far transfer learning only. When errors were highlighted, on the 
other hand, low prior knowledge individuals did significantly better, while high prior 
knowledge students did not benefit, presumably because they were already able to 
identify errors on their own. 

Recently, there has been increasing investigation of interactive erroneous 
examples, those that are computer-based, that allow students editing and correction, 
and for which feedback is provided. Unlike the Siegler and Grosse and Renkl studies, 
Tsovaltzi et al [14] presented erroneous examples of fractions to students using an 
interactive intelligent tutoring system with feedback. They found that 6th grade 
students improved their metacognitive skills when presented with erroneous examples 
with interactive help, as compared to a problem solving condition and an erroneous 
examples condition with no help. Older students – 9th and 10th graders – did not 
benefit metacognitively but did improve their problem solving skills and conceptual 
understanding by working with interactive erroneous examples that included help.  

Encouraged that interactive erroneous examples are promising instructional 
materials, our project team ran a study of decimal learning, in which we compared an 
interactive erroneous examples condition to (1) a worked examples condition and (2) 
a supported (i.e., with correctness feedback) problem solving condition [15]. 
However, the interactive erroneous examples did not lead to better learning results 
than worked examples or problem solving, nor was there an interaction between high 
and low prior knowledge and condition. We attributed this finding to two things. 
First, the prompted self-explanation of erroneous examples in this study was 
(potentially) too cognitively taxing. Students were asked to complete explanations of 
incorrect steps by filling in two phrases of a sentence, using pull-down menus. We 
observed students struggling with this task, possibly undercutting their math learning. 
Second, while we presented erroneous examples to review and compare to correct 
examples, we did not prompt students to find and correct the errors.   

The study presented in this paper was focused, first, on correcting the perceived 
problems with the prior study’s materials and, second, on collecting data so we can 
learn how to adapt the presentation of erroneous examples to lead to the best possible 
learning outcomes. 
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3 The Domain: Learning Decimals 

The domain we have focused on for this study is decimals. A variety of studies have 
shown that many students have difficulty mastering decimals and have common and 
persistent misconceptions [16, 17, 18], as well as problems that extend into adulthood 
[19, 20]. For instance, students often treat decimals as if they are whole numbers (e.g. 
they think 0.15 is greater than 0.8, since 15 is greater than 8, i.e., “longer decimals are 
larger”) or they think that all decimals are less than zero. Persistent misconceptions in 
students’ decimal knowledge must be overcome so students can handle everyday 
tasks (e.g., money calculations) and tackle more advanced mathematics. 

Our general approach to addressing decimal learning with erroneous examples has 
been to develop problems that focus on single, key misconceptions. Based on an 
extensive literature review, we created short names for and developed a taxonomy of 
misconceptions that represents 17 misconceptions [15]. The present study focuses on 
four of these misconceptions, the ones that prior research has shown are most 
common and contributory to other misconceptions: Megz (“longer decimals are 
larger”, e.g., 0.23 > 0.7), Segz (“shorter decimals are larger”, e.g., 0.3 > 0.57), Negz 
(“decimals less than 1.0 are negative”), and Pegz (“the numbers on either side of a 
decimal are separate and independent numbers”, e.g., 11.9 + 2.3 = 13.12). 

4 The Study 

For the current study we revised the materials from Isotani et al [15] by, in the 
interactive erroneous examples condition, simplifying the self-explanation step – 
asking students to complete sentences with one multiple-choice phrase instead of two 
– and by prompting the student to find and fix the errors in the erroneous examples. 
We also removed all problems, both on the tests and the intervention, related to two of 
the misconceptions explored in the earlier study (i.e., “multiplication always makes 
bigger” and “division always makes smaller”). This was done so we could focus on 
the most common misconceptions. Finally, we also simplified the experimental 
design, comparing only supported problem solving and interactive erroneous 
examples, while dropping the worked examples condition. We did this for two 
reasons. First, we wanted to compare the most common ecological control condition – 
that of students solving problems – to the much less typical learning experience of 
working with erroneous examples. Second, erroneous examples and problem solving 
are more comparable from a cognitive load perspective. As designed, they both 
require active problem solving – in the case of erroneous examples, the correction 
step; in the case of problem solving, generating the solution from the given problem – 
something worked examples do not (typically) require. Besides discovering whether 
erroneous examples could make a difference to learning, we had a goal of collecting 
data to help us determine how to implement automated material adaptation in a 
subsequent experiment. 
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4.1 Participants 

247 students from a suburban middle school started the study, but 39 were eliminated 
from analysis (due to missing class or not trying on one or more of the tests, i.e., test 
score of 0, or close to 0). The remaining 208 participants consisted of 101 male and 
107 female students. 105 of the students were in the 6th grade and 103 were in the 7th 
grade. Ages ranged from 11 to 13 (M= 11.99, SD = .722).  All students worked on the 
materials exclusively during class time, under the supervision of the teachers and at 
least one experimenter, as further explained below. 

4.2 Design and Materials 

The materials consisted of six components, all presented to students on the Internet 
with all interactions and feedback implemented and logged using the CTAT 
intelligent tutoring authoring software [21]. The activities of the study are shown in 
Fig. 1: a pretest, a questionnaire on demographic/math experience (Q1), the 
intervention problems, a questionnaire asking about the student’s experience with the 
materials (Q2), an immediate posttest, and a delayed posttest.  
 

 
Fig. 1: The study design and sequence of activities  

For the pretest and two posttests, three separate but isomorphic tests were 
constructed (Tests A, B, and C). Every problem on the test was designed to diagnose 
at least one of the misconceptions of interest – Megz, Segz, Negz, or Pegz. The 
problems on the tests included placing decimals on a number line, arranging decimal 
numbers in order by dragging and dropping numbers into a sequence, providing the 
next two numbers in a given sequence, and defining key decimal concepts by 
selecting from a multiple-choice list of possible definitions. All tests contained a total 
of 50 possible answers. For the demographic questionnaire (Q1), students were asked 
their gender, age, and grade level, as well as questions about their experience with 
decimals and computers. For the post-questionnaire (Q2), students were asked 
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questions such as, “I would like to do more lessons like this”, with answers provided 
on a 5-point Likert scale. 

In the intervention, the two groups were presented with isomorphic decimal 
problems, but with different presentations and ways of interacting with the problems. 
As shown in Fig. 2, the erroneous examples subjects were (a) presented with an 
incorrect solution by a fictitious student (upper left panel), (b) prompted to explain 
what the student had done incorrectly (upper right panel), (c) asked to detect and 
correct the error (middle left panel) and (d) prompted to explain and reflect on the 
correct answer (middle right panel and bottom left panel). They received feedback on 
their responses (i.e., green=correct; red=incorrect; with supportive feedback such as 
“You’ve got it. Well done.” displayed in the lower right panel).  
 

 
Fig. 2: Sample interactive erroneous example, targeted at the Megz misconception 

As shown in Fig. 3, the supported problem solving subjects were (a) asked to solve 
problems (upper panel) and (b) prompted to explain and reflect on the correct 
answers. These students also received feedback on their solutions (i.e., green=correct; 
red=incorrect; with supportive statements, as in the erroneous examples condition). 

As shown in Table 1, the intervention comprised a total of 36 problems, 24 of 
which had interactions such as that illustrated in Figures 2 and 3 (according to 
condition), and 12 of which were problems to solve (the same across conditions), 
presented to the students to encourage active processing of the concepts and skills just 
presented. The problems were arranged in groups of three, each group targeting one 
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of the misconceptions of interest (Megz, Segz, Pegz, and Negz – Highlighting in the 
table shows the grouping by threes).   

 

 
Fig. 3: Sample supported problem to solve, (isomorphic to the erroneous example problem in 

Fig. 2 and also targeted at the Megz misconception) 

4.3 Procedure 

The students were randomly assigned to either the supported problem solving or the 
erroneous example condition and to one of the six possible pretest / immediate 
posttest / delayed posttest orderings (e.g., ABC, ACB, BCA, etc.). The study took 
place exclusively in computer rooms in the school, replacing regular class time. The 
students were given a total of five 43-minute periods to complete the entire set of 
materials shown in Figure 1. They started the pretest on Day 1 and were allowed to 
continue immediately to the questionnaires and intervention, using as much of the 
first three days to work on these materials as needed. If students finished the materials 
early, they were asked to work on other, non-decimal materials and not disturb the 
students still working. On the 4th day all of the students were given the immediate 
posttest and 6 days later, on Day 5, they were all given the delayed posttest.  Between 
the time the students took the immediate posttest and the time they took the delayed 
posttest, they received no classroom exposure to decimals and were blocked from 
working with the web-based decimal materials.  
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Table 1: Design of the Intervention 

Supported Problem Solving (PS) Int. Erroneous Examples (ErrEx) 
1. Megz Supported PS 1 1. Megz ErrEx 1 
2. Megz Supported PS 2 2. Megz ErrEx 2 
3. Megz PS 1 3. Megz PS 1 
4. Segz Supported PS 1 4. Segz ErrEx 1 
5. Segz Supported PS 2 5. Segz ErrEx 2 
6. Segz PS 1 6. Segz PS 1 
7. Pegz Supported PS 1 7. Pegz ErrEx 1 
8. Pegz Supported PS 2 8. Pegz ErrEx 2 
9. Pegz PS 1 9. Pegz PS 1 
10. Negz Supported PS 1 10. Negz ErrEx 1 
11. Negz Supported PS 2 11. Negz ErrEx 2 
12. Negz PS 1 12. Negz PS 1 
13. Megz Supported PS 3 13. Megz ErrEx 3 
14. Megz Supported PS 4 14. Megz ErrEx 4 
15. Megz PS 2 15. Megz PS 2 
16. Segz Supported PS 3 16. Segz ErrEx 3 
17. Segz Supported PS 4 17. Segz ErrEx 4 
18. Segz PS 2 18. Segz PS 2 
19. Pegz Supported PS 3 19. Pegz ErrEx 3 
20. Pegz Supported PS 4 20. Pegz ErrEx 4 
21. Pegz PS 2 21. Pegz PS 2 
22. Negz Supported PS 3 22. Negz ErrEx 3 
23. Negz Supported PS 4 23. Negz ErrEx 4 
24. Negz PS 2 24. Negz PS 2 
25. Megz Supported PS 5 25. Megz ErrEx 5 
26. Megz Supported PS 6 26. Megz ErrEx 6 
27. Megz PS 3 27. Megz PS 3 
28. Segz Supported PS 5 28. Segz ErrEx 5 
29. Segz Supported PS 6 29. Segz ErrEx 6 
30. Segz PS 3 30. Segz PS 3 
31. Pegz Supported PS 5 31. Pegz ErrEx 5 
32. Pegz Supported PS 6 32. Pegz ErrEx 6 
33. Pegz PS 3 33. Pegz PS 3 
34. Negz Supported PS 5 34. Negz ErrEx 5 
35. Negz Supported PS 6 35. Negz ErrEx 6 
36. Negz PS 3 36. Negz PS 3 

5 Results 

Due to bugs in four of the problems in the tests, the data for those problems was 
removed from all students, leaving a total possible score of 46 for each test for all 
students. The mean score for the pretest, immediate posttest, and delayed posttest, per 
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condition, is shown in Figure 4.  Standard deviations were 9.4, 9.6, 9.5, 9.0, 9.2, and 
7.5 for the left-to-right scores of Figure 4. 
 

 
Fig. 4: Mean scores of pretest, immediate posttest, and delayed posttest 

All students significantly improved their test performance from pretest to 
immediate posttest (t(207) = -8.058, p < .001, mean increase of 9%) and from pretest 
to delayed posttest (t(207) = 14.496, p < .001, mean increase of 15%, a medium-to-
large effect, d = .75). An independent sample t-test revealed that the ErrEx group 
performed significantly better on the pretest than the Supported PS group, t (206) = 
3.045, p = .003. An ANOVA revealed that there was no significant difference 
between the order of the three tests (A, B, C), F (5,202) = 1.293, MSE = .057, p = 
.268; thus, we assume the three tests were truly isomorphic to one another. 

To determine whether the conditions differed significantly on the immediate and 
delayed posttest, an ANCOVA with pretest as a covariate was used.  Results showed:  

1. There were no significant differences in performance on the immediate posttest 
between the two groups, F(1,205) = .768, MSE = 34.97, p = .382, d = .38. 

2. On the delayed posttest there was a significant difference, in favor of the ErrEx 
condition, F(1,205) = 9.896, MSE = 349.08, p = .002, d = .62. 

In other words, although students in the ErrEx condition did not do significantly 
better than the students in the Supported PS condition on the immediate posttest, they 
did do significantly better on the delayed posttest, after a six-day delay. This occurred 
even though none of the students received further decimal training or practice 
between the immediate and delayed posttests. 

To see whether higher prior knowledge students benefitted more from erroneous 
examples than low prior knowledge students, as they had in prior studies (e.g., [13]), 
we divided the participants using a median split into a high prior knowledge group 
(score of 26-46, total of 101 students) and a low prior knowledge group (score of 8-
25, total of 107 students). ANCOVAs on posttest scores, with pretest covariates, 
showed the same outcome as 1-2 above, regardless of prior knowledge. That is, for 
both low and high prior knowledge learners there were no significant differences 
between conditions on the immediate-posttest, while the differences on the delayed-
posttest were significantly better for the erroneous examples condition. 
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6 Discussion  

Our study provides clear evidence that erroneous examples can help students learn. 
The delayed posttest results show that the students who were presented with 
interactive erroneous examples learned better than those who were presented with 
supported problems to solve. This suggests that erroneous examples may provide a 
deeper learning experience, one that can help students build upon their initial 
understanding of decimals, leading to a deeper understanding over time.  More 
specifically, it appears that erroneous examples might encourage generative 
processing (i.e., deeper cognitive processing that organizes the material and relates it 
to prior knowledge). This generative processing may be due to an effect referred to as 
“desirable difficulty” [22], in which problems of a more challenging form have been 
shown to lead to delayed learning benefits. The interactive erroneous examples of this 
study were very likely the harder of the two intervention types – and almost certainly 
less familiar to students – so they may have helped long-term retention. 

On the other hand, unlike the results of Grosse and Renkl’s study [13], we did not 
find that higher prior knowledge students benefited more from erroneous examples. 
We also expected that higher prior knowledge students would get more benefit than 
lower prior knowledge students in this study. Perhaps our materials, unlike those of 
the Grosse and Renkl study, were designed straightforwardly enough so that even 
lower prior knowledge students could easily follow, interact with, and learn from the 
examples without incurring excessive cognitive load. Indeed, one of our goals in this 
study was to simplify and streamline the prior year’s study materials, in which no 
erroneous examples effect was found [15]. We did the streamlining by, for instance, 
making the self-explanation statements pure multiple choice, rather than sentence 
construction items with multiple components. The Grosse and Renkl work was also 
different in that it focused on errors related to confusing problem types instead of 
deeply entrenched misconceptions, which is what the current study focused on.  In 
other words, erroneous examples may be more helpful for students with low prior 
knowledge when they involve common misconceptions. 

One caveat to our results is that more than a single variable differs between the 
erroneous examples and the supported problem solving materials. For instance, while 
students in both condition had to self-explain their work, the erroneous examples 
condition had the extra self-explanation step, prompting students to explain why the 
fictitious student may have made the given error. Yet, our goal in this study, which 
we view as one step in an exploration of how erroneous examples might benefit 
learning, was not to demonstrate the full generality of erroneous examples. Rather, 
our objective was to see if we could find an advantage to erroneous examples – which 
our results have clearly shown – and, in future studies, isolate the instructional 
features of the materials that might account for the benefits. It is also worth repeating 
that our erroneous examples intervention, while differing in multiple ways from 
supported problem solving, has still demonstrated advantages to the most obvious and 
common control condition, that of students solving problems in conventional fashion.  
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7 Future Work  

Our ultimate goal is to determine when and with what students we should present 
erroneous examples, and also to determine what types of erroneous examples to 
present to students. We have been pursuing this objective by modeling students with a 
Bayes Net of decimal misconceptions [23], which is updated when students take the 
tests described above. The Bayes Net represents the misconceptions that a student 
might have – Megz, Segz, Negz, and Pegz – and is updated based on carefully crafted 
test questions that probe for each of the misconceptions. Our isomorphic tests, A, B, 
and C, contain 9 Megz problems, 10 Segz problems, 10 Pegz problems, and 9 Negz 
problems, after the 4 buggy problems are eliminated (there are also 8 problems that 
are targeted at a more general misconception called Regz, which contributes to all of 
the other misconceptions). Students can either get these problems correct, in which 
case the probability of the targeted misconception drops, they can get them incorrect 
in an unexpected way, in which case the misconception is only partially increased, or 
they can get them incorrect in a way that provides direct evidence for the 
misconception in the Bayes Net. The tests were designed so that the misconception 
problems are relatively evenly distributed across the tests. Some of the misconception 
problems have possible answers that can indicate more than one misconception. The 
details of the Bayes Net are discussed in [23]. Our approach was inspired by the 
similar implementation of Stacey et al [24]. 

Given how the Bayes Net of each of the 208 students in the present study were 
updated, we calculated mean probabilities over all misconceptions: Segz=0.37; 
Megz=0.31; Pegz=0.15; Negz=0.15. Furthermore, we created misconception profiles 
for all of the students, based on the order of probability of each of the misconceptions 
for each student. For instance, a student with a Megz probability of 0.92, Segz 
probability of 0.75, Pegz probability of 0.32 and Negz probability of 0.2 would have a 
misconception profile of Megz>Segz>Pegz>Negz. Table 2 summarizes the 
misconception profiles of all the students by most prominent misconception, i.e., the 
misconception that has the highest probability. 

Table 2: Summary of the misconception profiles of all 208 students 

Description # Pre Megz Segz Pegz Negz General Misconception Profile 
Megz is the most 
prominent misc. 

42 18.1 0.97 0.55 0.28 0.19 Megz>Segz>Pegz>Negz 
 

Segz is the most 
prominent misc. 

60 19.3 0.34 0.89 0.10 0.21 Segz>Megz>Negz>Pegz 
 

Pegz is the most 
prominent misc. 

58 33.9 0.03 0.02 0.22 0.03 Pegz>Megz>Negz>Segz 
 

Negz is the most 
prominent misc. 

48 34.3 0.00 0.00 0.00 0.19 Negz>Pegz>Megz>Segz 
 

Key: The “#” column is the number of students with this misconception profile.  The “Pre” column 
is the number of items, on average out of 46, that students in this row got correct on the pretest. 
The values under the “Megz”, “Segz”, “Pegz”, and “Negz” columns are the average probabilities, 
according to the Bayes Net, that students in this row have each of these misconceptions. 
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As can be seen, the students were reasonably well distributed across the most 
prominent misconception categories, but there are stark differences in the mean 
values. Note that students who displayed the Megz (“longer decimals are larger”) and 
Segz (“shorter decimals are larger”) misconceptions as their most likely 
misconception, show a very high probability for actually having those misconceptions 
(see bold items in rows 1 and 2), while the students who displayed the Pegz (“each 
side of the decimal is separate and independent”) and Negz (“decimals less than 1.0 
are negative”) misconceptions as most likely, show a much lower probability for 
actually having those misconceptions (see bold items in rows 3 and 4). Furthermore, 
the pretest scores of the Megz and Segz students are dramatically lower than the Pegz 
and Negz students. Finally, the other possible misconceptions of the Megz and Segz 
students have a much high probability than those of the Pegz and Negz students.  

What does this tell us? First, these results are in line with the math education 
literature, which clearly indicates that Megz and Segz are the most likely decimal 
misconceptions of middle school math students. Having recently learned whole 
numbers and fractions, middle school students are very susceptible to the mistake of 
thinking longer decimals are larger (as is so with whole numbers) or that shorter 
decimals are larger (as is so with shorter denominators in fractions). Students who 
struggle with either (or both) of these misconceptions are much more likely to do 
poorly on decimal tests. Second, these results give us some clues about how to adapt 
our materials to particular students. Clearly, our system is more likely to be successful 
in helping students by emphasizing the Megz and Segz problems. Our initial plan is, 
not surprisingly, to provide more intervention problems aimed at the misconceptions 
for which students have shown they may have, according to the Bayes Net and the 
resulting misconception profiles. We will retrieve the misconception profile for each 
student and then provide that student with an intervention curriculum catered to that 
profile. The curriculum associated with each misconception profile will be weighted 
toward providing more problems aimed at that student’s highest-probability 
misconception, less problems at the next highest probability misconception, and so 
forth. Considering the three-problem “problem groups” of Table 1, given a student 
with misconceptions in the order A, B, C, D, we might present 4 problem groups 
aimed at misconception A; 3 problem groups aimed at misconception B; 2 problem 
groups aimed at misconception C; and 1 problem group aimed at misconception D. 
Curricula will be variable, though, dependent on how different the probabilities are 
within a profile, e.g., given the clear need to ameliorate the Negz misconception in the 
misconception profile of the last row of Table 2, we might present a student that has 
such a profile with many more Negz problem groups than any other problem groups.  
We are well positioned to identify the most likely curricula needed; we have mined 
data for all of the 208 students in the study from the Bayes Net, created their 
misconception profiles, and have quantitative data to guide our approach. For 
instance, we have discovered that, of the 24 possible profiles (all of the permutations 
of the 4 misconceptions), 6 profiles never occur. Within specific profiles we have also 
discovered that some students have high probability values, very close to 1, while 
others have very low probability values, very close to 0, suggesting that even within 
each misconception profile, we will want to adjust curricula per student. 
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Besides this relatively straightforward adaptation proposal, we will investigate 
more sophisticated strategies. For instance, it is likely that misconceptions are 
causally interrelated, to a certain extent, so we will investigate ways to identify 
causality and use it to make adaptation decisions. The misconception profiles could 
also be adjusted based on either (or both) the Likert or questionnaire data that we 
collect as part of our study. For instance, a student who says he or she is “very sure” 
of an incorrect (and misconception) answer would lead to a more weighted update of 
the Bayes Net than a student who says he or she is “unsure” of an incorrect answer.  

8 Conclusion 

This paper has presented a study that provides evidence that interactive erroneous 
examples may be helpful to learning, especially over time, when a student has had an 
opportunity to reflect. Our next step is to investigate how we can adapt our erroneous 
examples material according to user models represented as Bayes Nets of decimal 
misconceptions. We will investigate a relatively straightforward adaptation strategy to 
see if it can be helpful to learning and then explore more complex strategies.  
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