Skip to main content

Comparison of Input Data Compression Methods in Neural Network Solution of Inverse Problem in Laser Raman Spectroscopy of Natural Waters

  • Conference paper
Artificial Neural Networks and Machine Learning – ICANN 2012 (ICANN 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7553))

Included in the following conference series:

Abstract

In their previous papers, the authors of this study have suggested and realized a method of simultaneous determination of temperature and salinity of seawater using laser Raman spectroscopy, with the help of neural networks. Later, the method has been improved for determination of temperature and salinity of natural water using Raman spectra, in presence of fluorescence of dissolved organic matter as dispersant pedestal under Raman valence band. In this study, the method has been further improved by compression of input data. This paper presents comparison of various input data compression methods using feature selection and feature extraction and their effect on the error of determination of temperature and salinity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Font, J., Camps, A., Borges, A., et al.: SMOS: The challenging measurement of sea surface salinity from space. In: P. IEEE, vol. 98 (5), pp. 649–665. IEEE Press, New York (2010)

    Google Scholar 

  2. Turiel, A., Nieves, V., Garcia-Ladona, et al.: The multifractal structure of satellite sea surface temperature maps can be used to obtain global maps of streamlines. Ocean Sci. 5, 447–460 (2009)

    Article  Google Scholar 

  3. Boutin, J., Waldteufel, P., Martin, N., et al.: Surface salinity retrieved from SMOS measurements over the global ocean: Imprecisions due to sea surface roughness and temperature uncertainties. J. Atmos. Ocean. Technol. 21, 1432–1447 (2004)

    Article  Google Scholar 

  4. Eugenio, F., Marcello, J., Hernandez-Guerra, A., Rovaris, E.: Methodology to obtain accurate sea surface temperature from locally received NOAA-14 data in the Canary-Azores-Gibraltar area. Scientia Marina 65(1), 127–137 (2001)

    Google Scholar 

  5. Garcia-Santos, V., Valor, E., Caselles, V.: Determination of temperature by remote sensing. J. of Mediterranean Meteorology and Climatology 7, 67–74 (2010)

    Google Scholar 

  6. Walrafen, G.E.: Raman Spectral Studies of Water Structure. J. Chem. Phys. 40, 3249–3256 (1964)

    Article  Google Scholar 

  7. Walrafen, G.E.: Raman Spectral Studies of the Effects of Temperature on Water and Electrolyte Solutions. J. Chem. Phys. 44, 1546–1558 (1966)

    Article  Google Scholar 

  8. Walrafen, G.E.: Raman Spectral Studies of the Effects of Temperature on Water Structure. J. Chem. Phys. 47, 114–126 (1967)

    Article  Google Scholar 

  9. Chang, C.H., Young, L.A.: Seawater Temperature Measurement from Raman Spectra. Avco Everett Research Laboratory, Inc., Interim technical report (1972)

    Google Scholar 

  10. Leonard, D., Chang, C., Yang, L.: Remote measurement of fluid temperature by Raman scattered radiation. U.S. Patent 3.986.775, Class 356-75 (1974)

    Google Scholar 

  11. Leonard, D., Caputo, B., Hoge, F.: Remote sensing of subsurface water temperature by Raman scattering. Applied Optics 18(11), 1732–1745 (1979)

    Article  Google Scholar 

  12. Terpstra, P., Combes, D., Zwick, A.: Effect of salts on dynamics of water: A Raman spectroscopy study. J. Chem. Phys. 92(1), 65–70 (1990)

    Article  Google Scholar 

  13. Dolenko, T.A., Churina, I.V., Fadeev, V.V., Glushkov, S.M.: Valence band of liquid water Raman scattering: some peculiarities and applications in the diagnostics of water media. J. of Raman Spectroscopy 31(8-9), 863–870 (2000)

    Article  Google Scholar 

  14. Sherer, J., Go, M., Kint, S.: Raman spectra and structure of water from 10 to 90. J. Phys. Chem. 78(13), 1304–1313 (1974)

    Article  Google Scholar 

  15. Burikov, S.A., Churina, I.V., Dolenko, S.A., et al.: New approaches to determination of temperature and salinity of seawater by laser Raman spectroscopy. In: 3nd EARSeL Workshop on Remote Sensing of the Coastal Zone, pp. 298–305 (2003)

    Google Scholar 

  16. Karl, J., Ottmann, M., Hein, D.: Measuring water temperatures by means of linear Raman spectroscopy. In: Proc. of the 9th International Symposium on Application of Laser Techniques to Fluid Mechanics, vol. II, pp. 23.2.1–23.2.8 (1998)

    Google Scholar 

  17. Becucci, M., Cavalieri, S., Eramo, R., Fini, L., Materazzi, M.: Raman spectroscopy for water temperature sensing. Laser Physics 9(1), 422–425 (1999)

    Google Scholar 

  18. Furi, K., Cigleneki, I., Osovi, B.: Raman spectroscopic study of sodium chloride water solutions. J. Mol. Str., 550–551, 225–234 (2000)

    Google Scholar 

  19. Bekkiev, A., Gogolinskaya (Dolenko), T., Fadeev, V.: Simultaneous determination of temperature and salinity of seawater by the method of laser Raman spectroscopy. Soviet Physics Doklady 271(4), 849–853 (1983)

    Google Scholar 

  20. Shubina, D.M., Patsaeva, S.V., Yuzhakov, V.I., et al.: Fluorescence of organic matter dissolved in natural water. Water: Chemistry and Ecology 11, 31–37 (2009)

    Google Scholar 

  21. Gerdova, I.V., Churina, I.V., Dolenko, S.A., et al.: New Opportunities in Solution of Inverse Problems in Laser Spectroscopy Due to Application of Artificial Neural Networks. In: Proc. SPIE, vol. 4749, pp. 157–166 (2002)

    Google Scholar 

  22. Dolenko, T.A., Burikov, S.A., Sabirov, A.R., et al.: Remote determination of temperature and salinity in consideration of dissolved organic matter in natural waters using laser spectroscopy. In: EARSeL eProceedings, vol. 10(2), pp. 159–165 (2011)

    Google Scholar 

  23. Specht, D.: A General Regression Neural Network. IEEE Trans. on Neural Networks 2(6), 568–576 (1991)

    Article  Google Scholar 

  24. NeuroShell 2, http://www.wardsystems.com/neuroshell2.asp

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dolenko, S., Dolenko, T., Burikov, S., Fadeev, V., Sabirov, A., Persiantsev, I. (2012). Comparison of Input Data Compression Methods in Neural Network Solution of Inverse Problem in Laser Raman Spectroscopy of Natural Waters. In: Villa, A.E.P., Duch, W., Érdi, P., Masulli, F., Palm, G. (eds) Artificial Neural Networks and Machine Learning – ICANN 2012. ICANN 2012. Lecture Notes in Computer Science, vol 7553. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33266-1_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33266-1_55

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33265-4

  • Online ISBN: 978-3-642-33266-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics