Skip to main content

Tikhonov-Type Regularization for Restricted Boltzmann Machines

  • Conference paper
Artificial Neural Networks and Machine Learning – ICANN 2012 (ICANN 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7552))

Included in the following conference series:

Abstract

In this paper, we study a Tikhonov-type regularization for restricted Boltzmann machines (RBM). We present two alternative formulations of the Tikhonov-type regularization which encourage an RBM to learn a smoother probability distribution. Both formulations turn out to be combinations of the widely used weight-decay and sparsity regularization. We empirically evaluate the effect of the proposed regularization schemes and show that the use of them could help extracting better discriminative features with sparser hidden activation probabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bishop, C.M.: Pattern Recognition and Machine Learning (Information Science and Statistics), 1st edn. Springer (2006); 2nd printing edn. (October 2007)

    Google Scholar 

  2. Cho, K., Ilin, A., Raiko, T.: Improved learning of gaussian-bernoulli restricted boltzmann machines. In: Honkela, T. (ed.) ICANN 2011, Part I. LNCS, vol. 6791, pp. 10–17. Springer, Heidelberg (2011)

    Google Scholar 

  3. Cho, K., Raiko, T., Ilin, A.: Parallel tempering is efficient for learning restricted boltzmann machines. In: Proceedings of the International Joint Conference on Neural Networks (IJCNN 2010), Barcelona, Spain (July 2010)

    Google Scholar 

  4. Cho, K., Raiko, T., Ilin, A.: Enhanced Gradient and Adaptive Learning Rate for Training Restricted Boltzmann Machines. In: Proceedings of the Twenty-Seventh International Conference on Machine Learning, ICML 2011 (2011)

    Google Scholar 

  5. Coates, A., Lee, H., Ng, A.Y.: An analysis of single-layer networks in unsupervised feature learning. In: AISTATS (2011)

    Google Scholar 

  6. Courville, A., Bergstra, J., Bengio, Y.: Unsupervised models of images by spike-and-slab rbms. In: Getoor, L., Scheffer, T. (eds.) Proceedings of the 28th International Conference on Machine Learning (ICML 2011), pp. 1145–1152. ACM, New York (2011)

    Google Scholar 

  7. Desjardins, G., Courville, A., Bengio, Y., Vincent, P., Delalleau, O.: Parallel Tempering for Training of Restricted Boltzmann Machines. In: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, pp. 145–152 (2010)

    Google Scholar 

  8. Erhan, D., Bengio, Y., Courville, A., Manzagol, P.A., Vincent, P., Bengio, S.: Why does unsupervised pre-training help deep learning? Journal of Machine Learning Research (2010)

    Google Scholar 

  9. Haykin, S.: Neural Networks: A Comprehensive Foundation, 2nd edn. Prentice-Hall (July 1998)

    Google Scholar 

  10. Hinton, G.E., Salakhutdinov, R.R.: Reducing the Dimensionality of Data with Neural Networks. Science 313(5786), 504–507 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hinton, G.: A Practical Guide to Training Restricted Boltzmann Machines. Tech. rep., Department of Computer Science, University of Toronto (2010)

    Google Scholar 

  12. Hinton, G.E.: Training products of experts by minimizing contrastive divergence. Neural Comput. 14, 1771–1800 (2002)

    Article  MATH  Google Scholar 

  13. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-Based Learning Applied to Document Recognition. Proceedings of the IEEE 86, 2278–2324 (1998)

    Article  Google Scholar 

  14. Lee, H., Ekanadham, C., Ng, A.: Sparse deep belief net model for visual area V2, pp. 873–880 (2008)

    Google Scholar 

  15. Marlin, B.M., Swersky, K., Chen, B., de Freitas, N.: Inductive Principles for Restricted Boltzmann Machine Learning. In: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, pp. 509–516 (2010)

    Google Scholar 

  16. Ngiam, J., Khosla, A., Kim, M., Nam, J., Lee, H., Ng, A.Y.: Multimodal deep learning. In: International Conference on Machine Learning (ICML), Bellevue, USA (June 2011)

    Google Scholar 

  17. Rifai, S., Dauphin, Y.N., Vincent, P., Bengio, Y., Muller, X.: The manifold tangent classifier. In: Shawe-Taylor, J., Zemel, R.S., Bartlett, P., Pereira, F.C.N., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 24, pp. 2294–2302 (2011)

    Google Scholar 

  18. Rifai, S., Vincent, P., Muller, X., Glorot, X., Bengio, Y.: Contractive Auto-Encoders: Explicit Invariance During Feature Extraction. In: Getoor, L., Scheffer, T. (eds.) Proceedings of the 28th International Conference on Machine Learning (ICML 2011), pp. 833–840. ACM, New York (2011)

    Google Scholar 

  19. Salakhutdinov, R.: Learning Deep Generative Models. Ph.D. thesis, University of Toronto (2009)

    Google Scholar 

  20. Smolensky, P.: Information processing in dynamical systems: foundations of harmony theory. In: Parallel Distributed Processing: Explorations in the Microstructure of Cognition, vol. 1: Foundations, pp. 194–281. MIT Press, Cambridge (1986)

    Google Scholar 

  21. Tieleman, T.: Training restricted Boltzmann machines using approximations to the likelihood gradient. In: Proceedings of the 25th International Conference on Machine Learning, ICML 2008, pp. 1064–1071. ACM, New York (2008)

    Chapter  Google Scholar 

  22. Vincent, P.: A connection between score matching and denoising autoencoders. Neural Computation 23(7), 1661–1674 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cho, K., Ilin, A., Raiko, T. (2012). Tikhonov-Type Regularization for Restricted Boltzmann Machines. In: Villa, A.E.P., Duch, W., Érdi, P., Masulli, F., Palm, G. (eds) Artificial Neural Networks and Machine Learning – ICANN 2012. ICANN 2012. Lecture Notes in Computer Science, vol 7552. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33269-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33269-2_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33268-5

  • Online ISBN: 978-3-642-33269-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics