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Abstract. We analyze the relative relevance of Gabor amplitudes and
phases for face recognition. We propose an algorithm to reliably estimate
offset point disparities from phase differences and show that disparity-
corrected Gabor phase differences are well suited for face recognition in
difficult lighting conditions. The method reaches 74.8% recognition rate
on the Lighting set of the CAS-PEAL database and 35.7% verification
rate on experiment 2.4 of the FRGC database.

1 Introduction

Gabor wavelets are widely used for face recognition [10,2,11,1] and as models for
processing in the primary visual cortex. The complex-valued Gabor responses
are split up into an amplitude and a phase, which is called Gabor phase. The
amplitudes are models for the responses of complex cells in the visual system.
Recently, [12] achieved good face recognition from coarsely discretized Gabor
phases (extended local Gabor binary pattern), especially under strong illumina-
tion conditions.

Gabor wavelet responses at single locations of facial images are collected into
Gabor jets [10], which are extracted at several offset positions and assembled into
a Gabor graph G. Often, face graphs with nodes at facial landmark positions are
utilized [10,2], but in the present paper we use rectangular grid graphs, which
have shown to be at least as expedient [1,8].

The texture contents of Gabor graphs can be displayed by reconstruction [2].
Exemplary reconstructions of grid graphs are shown in Figure 1, where Fig-
ures 1(a) and 1(b) show the aligned images IA and IB , while Figures 1(c) and
1(d) display the images reconstructed from the Gabor graphs GA and GB . To
show the significance of Gabor phases for face recognition, absolute values and
phase values from graphs GA and GB are merged into GA,B and GB,A, where
each Gabor jet holds amplitudes of GA and phases of GB or vice versa. Visual
inspection of both reconstructions reveals that they resemble strongly the face
whose phases have been used. This can be interpreted such that recognition is
coupled to Gabor phases rather than amplitudes.

In this paper we first review the basics of Gabor graphs, then define different
similarity functions with and without disparity estimation. Then we test them
on two standard datasets, find good recognition rates using disparity, which are
finally discussed.
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Fig. 1. Reconstruction from graphs with exchanged Gabor phases: (a) and
(b) show the preprocessed images, (c) and (d) show reconstructions of the texture in-
formation included in the according grid graphs of type G[3] (cf. Section 4). (e) and (f)
display reconstructed graphs containing the absolute Gabor wavelet responses from (c)
and the phase values from (d), and vice versa.

2 Gabor jets and their similarities

Gabor wavelets ψk(x) are two-dimensional complex-valued image filters [6]:
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Commonly, the discrete Gabor wavelet family is generated by defining 40 differ-
ent parameter vectors kj [10]:

kj = kµ,ν =
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in five scales (µ = 0, . . . , 4) and eight orientations (ν = 0, . . . , 7).
A Gabor jet J is the collection of these 40 responses of these Gabor wavelets

at a given image position, generated by the convolution of I with all Gabor
wavelets:

(J (x))j =
(
I ∗ ψkj

)
(x) . (3)

The complex-valued elements (J )j of the Gabor wavelets are used in normalized
polar form: ‖J ‖ ·aj · exp (i φj), with phases φj and amplitudes aj normalized by
the length of the Gabor jet [5].

A Gabor graph consists of a set of nodes, which are located at different posi-
tions xn and connected by a set of edges. Both number and position of nodes and
graph topology are, in principle, arbitrary. In this paper we restrict the positions
to rectangular grids xαβ = x00 + α(0, ∆)T + β(∆, 0)T , α ∈ {0, . . . , αmax}, β ∈
{0, . . . , βmax}. Unlike in [6], all similarity functions studied here are independent
of the edges, and therefore the edge set does not influence the results. For visual-
ization, edges connect the four nearest neighbors. To assure that corresponding
facial features are compared, images are aligned to the hand-labeled eye posi-
tions provided with the test databases, and one node is placed at each eye center
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which yields the value of ∆. To study the influence of both grid sizes and image
resolution we use grids G[1] with 7 × 5 nodes, G[2] with 10 × 8 nodes, Grid G[3]
with 23 × 16 nodes on 168 × 224 pixel images, and G[4] with 23 × 16 nodes on
300× 400 pixel images.

To estimate the identity of a probe image, it is compared with several gallery
images and assigned the identity of the most similar gallery image. Image com-
parison is traced back to the comparison of the two Gabor graphs extracted
from these images. Two graphs are compared by computing similarities of Ga-
bor jets at corresponding grid positions. Due to head rotation, facial expres-
sions, or image alignment errors, the offset positions of the two corresponding
Gabor jets might be incorrect. In the elastic bunch graph matching (EBGM)
approach [10], the correspondence problem is solved locally by computing off-
set position corrections, so-called disparities. Applying these disparities leads to
distorted graphs [10], where only integral offset position errors are corrected.

To use Gabor phase differences reasonably, sub-pixel accuracy is required
since disparities of half a pixel length can change Gabor phases by up to π/4. For
estimating the disparities in sub-pixel accuracy, a well-known technique [9,10]
processing Gabor jets is extended to estimate larger disparity vectors reliably.
Instead of moving node positions, these disparities are used directly to correct the
Gabor phase difference in the face recognition process. Furthermore, we propose
a simple method to incorporate absolute and phase values of Gabor wavelet
responses. We show that this method works well on images with controlled frontal
illumination, and outperforms current face recognition algorithms on images with
strong non-frontal or uncontrolled illumination.

Jets are compared by similarity functions, some of them are based on am-
plitudes only (see [3]). The following functions were already successfully em-
ployed [10,2] to solve the correspondence problem and/or calculate global simi-
larities for face recognition (SA, SC , and SD stand for amplitude, Canberra, and
disparity similarity, respectively):

SA(J ,J ′) =

39∑
j=0

aj a
′
j , (4)

SC(J ,J ′) = 1− 1

40

39∑
j=0

|aj − a′j |
aj + a′j

, (5)

SD(J ,J ′) =

39∑
j=0

aj a
′
j cos

(
φ− φ′ − kTj d

)
. (6)

The disparity vector d = (dh dv)
T

accounts for the correction between the offset
positions of J and J ′. Given a Gabor jet J at a certain position in a reference
image, the disparity vector of Gabor jet J ′ in the probe image points to the
location where the Gabor jet most similar to J is to be expected. In the case
of SD, the disparity vector d is estimated by solving eq. (10) below by a new
coarse-to fine strategy. The respective similarity functions are (SN and Sn for
two types of “new” similarity):
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Finally, we use the following alternative combination:

Sn+C(J ,J ′) = Sn(J ,J ′) + SC(J ,J ′) . (9)

The similarity of two grid graphs is computed as the average similarity of
the Gabor jets at the grid positions.

3 Disparity estimation

In [10] the Taylor expansion cos(x) ≈ 1 − 1
2x

2 was used to approximate the
similarity SD from eq. (6), and the optimal disparity is calculated by setting the
gradient of the resulting function to zero. This leads to [9,2] d = Γ-1Φ, with
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) (10)

The resulting disparity vector d is only useful in a very limited range around the
offset point (see Figure 2(a)) because complete phase cycles are not addressed
correctly in the Taylor expansion. In this paper, we employ a course-fine strategy
to estimate complete 2π phase cycles. We replace the linear offset in eq. (10) by
adding an integral multiple nj of the wavelength of the respective wavelets, i. e.,
we approximate cos(x) ≈ 1 − 1

2 (x − n 2π)2 for x ≈ n 2π. This leads to the
following algorithm: At the lowest frequency scale µ = 4, all nj are set to zero.
The disparities: dµ = Γ-1

µ Φµ are calculated using:
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(11)

For the following scales µ = 3, . . . , 0, the nj values are computed using the
estimated disparity from the lower frequency levels:

∀j ∈ {8µ, . . . , 8(µ+ 1)− 1 } : nj =

⌊
φj − φ′j − k

T
j dµ+1

2π

⌉
(12)
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(a) Simple after eq. (10) (b) Phase-corrected after eq. (11)

Fig. 2. Disparity estimation: Each arrow shows the disparity d (a) or d0 (b) from
the Gabor jet at its offset point and the reference Gabor jet at the nose-tip (marked
with a white dot). The color codes the similarity value, ranging from blue (low) to red
(high).

where b·e denotes the integral rounding operator. The final disparity is d0, which
corresponds much better to the true offset (Figure 2(b)).

4 Experiments

The face recognition or verification results of the different similarity functions
are computed for two image databases: the CAS-PEAL database [1] and the
FRGC database in the version ver2.0 [7]. Both provide hand-labeled eye posi-
tions, experimental setups and according baseline results, which are compared
to the results of our recognition system.

4.1 CAS-PEAL

The CAS-PEAL [1] images are partitioned into a gallery of 1040 images with
ambient illumination and neutral facial expression, and different probe sets. We
here process the probe sets Expression and Lighting. For each probe set, the four
different grid types and several similarity functions are tested. In case of grid
size G[4], the images of the original resolution of 360 × 480 pixels are partially
scaled up before cutting out the face, possibly leaving scaling artifacts. The best
results are summarized in Table 1.

The Expression probe set contains 1570 images with ambient illumination,
showing one of five facial expressions. Generally, the smaller graphs performed
worse than G[3] and G[4]. The phase-corrected disparity similarity functions SN
and Sn reach rates about 95%. The combination Sn+C is slightly worse than SC
alone. The performance of G[4] is inferior to G[3], replicating the findings of [4,5].
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Algorithm Expression Lighting

PCA 53.7% 8.2%

PCA+LDA 71.3% 21.8%

GPCA+LDA 90.6% 44.8%

LGBPHS 95% 51%

SC on G[3] 98.9% 59.6%

Sn on G[3] 97.2% 59.7%

Sn+C on G[3] 98.3% 67.9%

Sn+C on G[4] 96.8% 74.8%

Table 1. Result comparison on CAS-PEAL: Baseline results from [1] and the best
results of our recognition experiments. Column maxima are in boldface.

The Lighting probe set consists of 2243 images with neutral expression, but
strong fluorescent illumination from fifteen different directions and one frontal
incandescent illumination. Recognizing these probe images by comparing them
to frontally illuminated gallery faces is hard. The results obtained using G[3] and
G[4] again outperform the low resolution grids G[1] − G[2]. We [4] showed that
higher image resolutions and higher frequency Gabor wavelets lead to the same
results, indicating that the phases of higher frequencies are more valuable, at
least when dealing with strong non-frontal illumination.

The CAS-PEAL database [1] provides the recognition results for eigenface-
based algorithms like PCA or PCA+LDA and more recent Gabor-wavelet-based
algorithms like GPCA+LDA and LGBPHS. In Table 1, they are compared with
the results reported in this paper. Recognition rates are directly comparable
since identical gallery and probe sets are taken, and also [1] aligned the facial im-
ages according to the same hand-labeled eye positions. The Gabor-wavelet-based
GPCA+LDA, which also requires training data, and the non-trained LGBPHS
show high recognition rates on the Expression and Lighting sets. The results re-
ported in this paper, which use untrained image comparisons, are a little higher
on the Expression subset, and outperforming the Lighting subset by far. The
combination Sn+C on G[4] gives half the error rate in the Lighting experiments.

4.2 FRGC

The Face Recognition Grand Challenge (FRGC) database in version 2.0 [7] con-
sists of 36818 facial images of 466 persons taken under controlled or uncontrolled
lighting with some expression. They are divided into a training set of 12776 im-
ages of 222 identities and a target set of 16028 controlled and a query set of 8014
uncontrolled images of all 466 people. Here, we perform experiment 2.1, compar-
ing target with target images, and experiment 2.4, matching query images with
uncontrolled illumination against the target images with controlled illumination.
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(b) Experiment 2.4

Fig. 3. FRGC ROC III curves: Dependency of the verification result on the simi-
larity functions for (a) experiment 2.1 and (b) experiment 2.4 of the FRGC database.
G[4] was used throughout.

The eigenface baseline results 66% for experiment 2.1 and 12% for experiment
2.4 provided by the FRGC database [7] are given in correct acceptance rates
(CAR) or verification rates (VR) at 0.1% false acceptance rate (FAR). For com-
parison with the baseline results, we use the most challenging mask ROC III
(cf. [7]), throughout.

The resulting ROC curves are given in Figure 3. Astonishingly, even for
experiment 2.1 as given in Figure 3(a) comparing controlled images only, the Sn
function already works better than the SC function, and the combination Sn+C
outperforms any other function. Generally, G[4] performed best. The highest
verification rate of 87% is achieved by Sn+C on G[4], but this time exceeding Sn on
G[4] only insignificantly. The verification rates for the more demanding problem
of comparing uncontrolled with controlled images are presented in Figure 3(b).
There, the improvement through the disparity corrected Gabor phase difference
Sn is huge compared to any amplitude-only similarity function (VR of 34.7% vs.
18.9% at 0.1% FAR).

5 Discussion

In this paper, we extend the well-known Gabor jet disparity similarity function
to allow a higher disparity of the offset positions. Using this estimated disparity,
we propose several novel Gabor phase based similarity functions, which turn out
to be very useful for recognizing faces photographed with strong or uncontrolled
lighting conditions. Especially, images with higher resolutions seem to contain
more useful Gabor phase information. Apparently, responses of lower frequency
Gabor wavelets hold more illumination specific values, while higher frequency
waves code the identity. When the resolution of the original images is sufficient,
disparity corrected Gabor phase differences are also beneficial for face recognition
under uncontrolled illumination.
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Although the proposed system uses a simple average of Gabor jet similarities,
it already outperforms state-of-the-art algorithms that use large training sets.
Advanced machine learning techniques could further improve face recognition
accuracy of our method.

Acknowledgments

We gratefully acknowledge funding from the German Research Foundation (WU
314/2-2 and WU 314/5-2). Portions of the research in this paper use the CAS-
PEAL face database collected under the sponsorship of the Chinese National
Hi-Tech Program and IS VISION Tech. Co. Ltd. [1].

References

1. Gao, W., Cao, B., Shan, S., Chen, X., Zhou, D., Zhang, X., Zhao, D.: The CAS-
PEAL large-scale Chinese face database and baseline evaluations. IEEE Transac-
tions on Systems, Man, and Cybernetics 38, 149–161 (January 2008)

2. Günther, M.: Statistical Gabor Graph Based Techniques for the Detection, Recog-
nition, Classification, and Visualization of Human Faces. Ph.D. thesis, Fak. In-
formatik und Automatisierung, TU Ilmenau, Germany (2011), ISBN: 987-3-8440-
0955-2
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