Skip to main content

A Dynamic Binding Mechanism for Retrieving and Unifying Complex Predicate-Logic Knowledge

  • Conference paper
Artificial Neural Networks and Machine Learning – ICANN 2012 (ICANN 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7552))

Included in the following conference series:

Abstract

We show how to encode, retrieve and process complex structures equivalent to First-Order Logic (FOL) formulae, with Artificial Neural Networks (ANNs) designed for energy-minimization. The solution constitutes a binding mechanism that uses a neural Working Memory (WM) and a long-term synaptic memory (LTM) that can store both procedural and declarative FOL-like Knowledge-Base (KB). Complex structures stored in LTM are retrieved into the WM only upon need, where they are further processed. The power of our binding mechanism is demonstrated on unification problems: as neurons are dynamically allocated from a pool, most generally unified structures emerge at equilibrium. The network’s size is O(n·k), where n is the size of the retrieved FOL structures and k is the size of the KB. The mechanism is fault-tolerant, as no fatal failures occur when random units fail. The paradigm can be used in a variety of applications, such as language processing, reasoning and planning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ballard, D.H.: Parallel logical inference and energy minimization. In: Proceedings of the AAAI National Conference on Artificial Intelligence, pp. 203–208 (1986)

    Google Scholar 

  2. Barrett, L., Feldman, J.A., Dermed, M.L.: A (somewhat) new solution to the binding problem. Neural Computation 20, 2361–2367 (2008)

    Article  MATH  Google Scholar 

  3. Browne, A., Sun, R.: Connectionist variable binding. Springer, Heidelberg (2000)

    Google Scholar 

  4. d’Avila Garcez, A.S., Lamb, L.C., Gabbay, D.M.: Neuro-Symbolic Cognitive Reasoning, Cognitive Technologies. Springer (2008)

    Google Scholar 

  5. Feldman, J.: The Binding Problem(s) (2010), http://www.computational-logic.org/content/events/iccl-ss-2010/slides/feldman/papers/Binding8.pdf

  6. Fodor, J.A., Phylyshyn, Z.W.: Connectionism and cognitive architecture: A critical analysis. In: Pinker, Mehler (eds.) Connectionism and Symbols, pp.3–71. MIT Press (1988)

    Google Scholar 

  7. Hölldobler, S.: A Structured Connectionist Unification Algorithm. In: Proceedings of the Eighth National Conference on Artificial Intelligence, vol. 1 (1990)

    Google Scholar 

  8. Hölldobler, S., Kurfess, F.: CHCL-A Connectionist Inference System. In: Fronhöfer, B., Wrightson, G. (eds.) Dagstuhl Seminar 1990. LNCS (LNAI), vol. 590, pp. 318–342. Springer, Heidelberg (1992)

    Chapter  Google Scholar 

  9. Jackendoff, R.: Foundations of Language: Brain, Meaning, Grammar, Evolution. Oxford University Press (2002)

    Google Scholar 

  10. Komendantskaya, E.: Unification neural networks: unification by error-correction learning. Logic Jnl IGPL (2010)

    Google Scholar 

  11. Paterson, M., Wegman, M.: Linear unification. J. Comput. Syst. Sci. 16(2), 158–167 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  12. Pinkas, G.: Reasoning, non-monotonicity and learning in connectionist networks that capture propositional knowledge. Artificial Intelligence 77, 203–247 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  13. Pinkas, G.: Symmetric neural networks and logic satisfiability. Neural Comp. 3(2) (1991)

    Google Scholar 

  14. Pinkas, G.: Constructing proofs symmetric networks. In: NIPS-4, pp. 217–224 (1992)

    Google Scholar 

  15. Plate, T.: Holographic Reduced Representations. IEEE Trans. Neural Network 6(3) (2003)

    Google Scholar 

  16. Shastri, L., Ajjanagadde, V.: From associations to systematic reasoning: A connectionist representation of rules, variables and bindings. BBS 16(3), 417–494 (1993)

    Google Scholar 

  17. Lima, P.M.V.: Resolution-Based Inference on Artificial Neural Networks. Ph.D. Thesis, Department of Computing. Imperial College London, UK (2000)

    Google Scholar 

  18. Stolke, A.: Unification as Constraint Satisfaction in Structured Connectionist Networks. Neural Computation 1(4), 558–566 (1989)

    Google Scholar 

  19. Van der Velde, F., Kamps, M.: Neural blaclboard architectures of combinatorial structures and cognition. Behav. Brain Sci. 29, 1–72 (2006)

    Google Scholar 

  20. Bader, S., Hitzler, S., Holdobler, S.: Connectionist model generation: A first-order approach. Neurocomputing 71, 2420–2432 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pinkas, G., Lima, P., Cohen, S. (2012). A Dynamic Binding Mechanism for Retrieving and Unifying Complex Predicate-Logic Knowledge. In: Villa, A.E.P., Duch, W., Érdi, P., Masulli, F., Palm, G. (eds) Artificial Neural Networks and Machine Learning – ICANN 2012. ICANN 2012. Lecture Notes in Computer Science, vol 7552. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33269-2_61

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33269-2_61

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33268-5

  • Online ISBN: 978-3-642-33269-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics