Skip to main content

Design of a Neural Interface Based System for Control of Robotic Devices

  • Conference paper
Information and Software Technologies (ICIST 2012)

Abstract

The paper describes the design of a Neural Interface Based (NIS) system for control of external robotic devices. The system is being implemented using the principles of component-based reuse and combines modules for data acquisition, data processing, training, classification, direct and the NIS-based control as well as evaluation and graphical representation of results. The system uses the OCZ Neural Impulse Actuator to acquire the data for control of Arduino 4WD and Lynxmotion 5LA Robotic Arm devices. The paper describes the implementation of the system’s components as well as presents the results of experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Millán, J.R., Renkens, F., Mouriño, J., Gerstner, W.: Non-Invasive Brain-Actuated Control of a Mobile Robot. IEEE Trans. on Biomedical Engineering 51(6), 1026–1033 (2004)

    Article  Google Scholar 

  2. Wolpaw, J.R., Birbaumer, N., McFarland, D.J., Pfurtscheller, G., Vaughan, T.M.: Braincomputer interfaces for communication and control. Clinical Neurophysiology 113, 767–791 (2002)

    Article  Google Scholar 

  3. Hatsopoulos, N.G., Donoghue, J.P.: The science of neural interface systems. Annu. Rev. Neurosci. 32, 249–266 (2009)

    Article  Google Scholar 

  4. Iturrate, I., Antelis, J., Kuebler, A., Minguez, J.: Non-Invasive Brain-Actuated Wheelchair based on a P300 Neurophysiological Protocol and Automated Navigation. IEEE Trans. on Robotics 25(3), 614–627 (2009)

    Article  Google Scholar 

  5. Bartošová, V., Vyšata, O., Procházka, A.: Graphical User Interface for EEG Signal Segmentation. In: Proc. of 15th Annual Conf. Technical Computing, Prague, 22/1-6 (2007)

    Google Scholar 

  6. Miner, L.A., McFarland, D.J., Wolpaw, J.R.: Answering questions with an EEG-based brain–computer interface (BCI). Arch. Phys. Med. Rehabil. 79, 1029–1033 (1998)

    Article  Google Scholar 

  7. Birbaumer, N., Ghanayim, N., Hinterberger, T., Iversen, I., Kotchoubey, B., Kübler, A., Perelmouter, J., Taub, E., Flor, H.: A spelling device for the paralysed. Nature 398, 297–298 (1999)

    Article  Google Scholar 

  8. Pfurtscheller, G., Neuper, C., Müller, G.R., Obermaier, B., Krausz, G., Schlögl, A., Scherer, R., Graimann, B., Keinrath, C., Skliris, D., Wörtz, M., Supp, G., Schrank, C.: Graz-BCI: state of the art and clinical applications. IEEE Trans. Neural Sys. Rehabil. Eng. 11, 177–180 (2003)

    Google Scholar 

  9. Escolano, C., Antelis, J., Minguez, J.: Human Brain-Teleoperated Robot between Remote Places. In: IEEE Int. Conf. on Robotics and Automation, ICRA 2009, pp. 4430–4437 (2009)

    Google Scholar 

  10. Cong, W., Bin, X., Jie, L., Wenlu, Y., Dianyun, X., Velez, A.C., Hong, Y.: Motor imagery BCI-based robot arm system. In: 7th Int. Conf. on Natural Computation, ICNC, pp. 181–184 (2011)

    Google Scholar 

  11. Sepulveda, F.: Brain-actuated Control of Robot Navigation. In: Advances in Robot Navigation, ch. 8 (2011)

    Google Scholar 

  12. Rebsamen, B., Burdet, E., Cuntai, G., Chee, L.T., Qiang, Z., Ang, M., Laugier, C.: Controlling a wheelchair using a BCI with low information transfer rate. In: IEEE 10th Int. Conf. on Rehabilitation Robotics, ICORR 2007, Noordwijk, Netherlands, pp. 1003–1008 (2007)

    Google Scholar 

  13. Gao, X., Xu, D., Cheng, M., Gao, S.: A BCI-based environmental controller for the motion-disabled. IEEE Trans. Neural Syst. Rehabil. Eng. 11, 137–140 (2003)

    Article  Google Scholar 

  14. Nawroj, A., Wang, S., Yu, Y.-C., Gabel, L.A.: A Brain Computer Interface for Robotic Navigation. In: IEEE 38th Annual Northeast Bioengineering Conference (NEBEC), Philadelphia, PA, March 16-18 (2012)

    Google Scholar 

  15. Duguleana, M.: Developing a brain-computer-based human-robot interaction for industrial environments. In: Annals of DAAAM for 2009 & Proceedings of the 20th International DAAAM Symposium, vol. 20(1), pp. 191–192 (2009)

    Google Scholar 

  16. Schalk, G.: Effective brain-computer interfacing using BCI2000. In: IEEE Int. Conf. of the Engineering in Medicine and Biology Society, EMBC 2009, pp. 5498–5501 (2009)

    Google Scholar 

  17. McCullagh, P.J., Ware, M.P., Lightbody, G.: Brain Computer Interfaces for inclusion. In: 1st Augmented Human International Conference (AH 2010), Article 6, 8 p. ACM, New York (2010)

    Google Scholar 

  18. Sametinger, J.: Software Engineering with Reusable Components. Springer (1997)

    Google Scholar 

  19. Martišius, I., Damaševičius, R.: Class-Adaptive Denoising for EEG Data Classification. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012, Part II. LNCS, vol. 7268, pp. 302–309. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  20. Ince, N.F., Arica, S., Tewfik, A.: Classification of single trial motor imagery EEG recordings with subject adapted nondyadi arbitrary time-frequency tilings. J. Neural Eng. 3, 235–244 (2006)

    Article  Google Scholar 

  21. Atto, A.M., Pastor, D., Mercier, G.: Smooth Sigmoid Wavelet Shrinkage For Non-Parametric Estimation. In: IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, ICASSP 2008, Las Vegas, Nevada, USA, pp. 3265–3268 (2008)

    Google Scholar 

  22. Martisius, I., Damasevicius, R., Jusas, V., Birvinskas, D.: Using higher order nonlinear operators for SVM classification of EEG data. Electronics and Electrical Engineering 3(119), 99–102 (2012)

    Google Scholar 

  23. Freund, Y., Schapire, R.E.: Large Margin Classification Using the Perceptron Algorithm. Machine Learning 37(3), 277–296 (1999)

    Article  MATH  Google Scholar 

  24. Damasevicius, R., Martisius, I., Sidlauskas, K.: Towards Real Time Training of Neural Networks for Classification of EEG Data. International Journal of Artificial Intelligence (IJAI)

    Google Scholar 

  25. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines. Cambridge University Press (2000)

    Google Scholar 

  26. Sun, B.-Y., Zhang, X.-M., Wang, R.-Y.: On Constructing and Pruning SVM Ensembles. In: 3rd Int. IEEE Conf. on Signal-Image Technologies and Internet-Based System, SITIS 2007, pp. 855–859 (2007)

    Google Scholar 

  27. Joachims, T.: A Support Vector Method for Multivariate Performance Measures. In: Proc. of 22nd Int. Conf. on Machine Learning, ICML 2005, pp. 377–384 (2005)

    Google Scholar 

  28. Filippi, H.: Wireless Teleoperation of Robotic Arms. Master Thesis, Luleå University of. Technology, Kiruna, Espoo-Finland (2007)

    Google Scholar 

  29. Blakely, T.M., Smart, W.D.: Control of a Robotic Arm Using Low-Dimensional EMG and ECoG Biofeedback Technical Report WUCSE-2007-39, Department of Computer Science and Engineering, Washington University in St. Louis (2007)

    Google Scholar 

  30. Appin Knowledge Solutions: Robotics, 1st edn. Jones & Bartlett Publishers (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Martisius, I., Vasiljevas, M., Sidlauskas, K., Turcinas, R., Plauska, I., Damasevicius, R. (2012). Design of a Neural Interface Based System for Control of Robotic Devices. In: Skersys, T., Butleris, R., Butkiene, R. (eds) Information and Software Technologies. ICIST 2012. Communications in Computer and Information Science, vol 319. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33308-8_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33308-8_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33307-1

  • Online ISBN: 978-3-642-33308-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics