Skip to main content

Simulation of Wildfire Spread Using Cellular Automata with Randomized Local Sources

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7495))

Abstract

The accuracy of Cellular Automata (CA) methods for simulating wildfires is limited by the fact that spread directions are constrained to the few angles imposed by the regular lattice of cells. To mitigate such problem, this paper proposes a new CA in which a local randomization of the spread directions is explicitly introduced over the lattice. The suggested technique, inspired by a method already used for simulating lava flows, is empirically investigated under homogeneous conditions and by comparison with the vector-based simulator FARSITE. According to the presented results, the adopted randomization seems to be able to significantly improve the accuracy of CA based on a standard center-to-center ignition scheme.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Finney, M.A.: FARSITE: fire area simulator-model development and evaluation. Technical Report RMRS-RP-4, USDA, Forest Service (February 2004)

    Google Scholar 

  2. Tymstra, C., Bryce, R., Wotton, B., Taylor, S., Armitage, O.: Development and structure of Prometheus: the Canadian wildland fire growth simulation model. Technical Report NOR-X-417, Canadian Forest Service, Edmonton, Alberta (2010)

    Google Scholar 

  3. Peterson, S.H., Morais, M.E., Carlson, J.M., Dennison, P.E., Roberts, D.A., Moritz, M.A., Weise, D.R.: Using HFIRE for spatial modeling of fire in shrublands. Technical Report PSW-RP-259, USDA, Forest Service, Pacific Southwest Research Station, Albany, CA (2009)

    Google Scholar 

  4. French, I., Anderson, D., Catchpole, E.: Graphical simulation of bushfire spread. Mathematical Computer Modelling 13, 67–71 (1990)

    Article  Google Scholar 

  5. French, I.: Visualisation techniques for the computer simulation of bushfires in two dimensions. Master’s thesis, University of New South Wales - Australian Defence Force Academy. Dept. of Computer Science (1992)

    Google Scholar 

  6. Cui, W., Perera, A.H.: A study of simulation errors caused by algorithms of forest fire growth models. Technical Report 167, Ontario Forest Research Institute (2008)

    Google Scholar 

  7. Johnston, P., Kelso, J., Milne, G.: Efficient simulation of wildfire spread on an irregular grid. International Journal of Wildland Fire 17, 614–627 (2008)

    Article  Google Scholar 

  8. O’Regan William, G., Peter, K., Shirley, N.: Bias in the contagion analog to fire spread. Forest Science 22 (1976)

    Google Scholar 

  9. Trunfio, G.A., D’Ambrosio, D., Rongo, R., Spataro, W., Gregorio, S.D.: A new algorithm for simulating wildfire spread through cellular automata. ACM Trans. Model. Comput. Simul. 22(1), 6 (2011)

    Article  Google Scholar 

  10. Miyamoto, H., Sasaki, S.: Simulating lava flows by an improved cellular automata method. Computers & Geosciences 23(3), 283–292 (1997)

    Article  Google Scholar 

  11. Rothermel, R.C.: A mathematical model for predicting fire spread in wildland fuels. Technical Report INT-115, USDA, Forest Service, Intermountain Forest and Range Experiment Station, Ogden, UT (1972)

    Google Scholar 

  12. Rothermel, R.C.: How to predict the spread and intensity of forest and range fires. Technical Report INT-143, USDA, Forest Service, Intermountain Forest and Range Experiment Station, Ogden, UT (1983)

    Google Scholar 

  13. Vasconcelos, J., Zeigler, B., Pereira, J.: Simulation of fire growth in GIS using discrete event hierarchical modular models. Advances in Remote Sensing 4(3), 54–62 (1995)

    Google Scholar 

  14. Lopes, A.M.G., Cruz, M.G., Viegas, D.X.: Firestation - an integrated software system for the numerical simulation of fire spread on complex topography. Environmental Modelling and Software 17(3), 269–285 (2002)

    Article  Google Scholar 

  15. Hu, X., Ntaimo, L.: Integrated simulation and optimization for wildfire containment. ACM Trans. Model. Comput. Simul. 19(4), 1–29 (2009)

    Article  Google Scholar 

  16. Trunfio, G.A.: Predicting Wildfire Spreading Through a Hexagonal Cellular Automata Model. In: Sloot, P.M.A., Chopard, B., Hoekstra, A.G. (eds.) ACRI 2004. LNCS, vol. 3305, pp. 385–394. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  17. Andrews, P.: BEHAVE: fire behavior prediction and fuel modeling system - burn subsystem, part 1. Technical Report INT-194, USDA, Forest Service (1986)

    Google Scholar 

  18. Anderson, H.: Predicting wind-driven wildland fire size and shape. Technical Report INT-305, USDA, Forest Service (1983)

    Google Scholar 

  19. McAlpine, R., Lawson, B., Taylor, E.: Fire spread across a slope. In: Proceedings of the 11th Conference on Fire and Forest Meteorology, pp. 218–225. Society of American Foresters, Bethesda (1991)

    Google Scholar 

  20. Blecic, I., Cecchini, A., Trunfio, G.A.: A general-purpose geosimulation infrastructure for spatial decision support. Transactions on Computational Science 6, 200–218 (2009)

    Google Scholar 

  21. Forthofer, J., Shannon, K., Butler, B.: Simulating diurnally driven slope winds with windninja. In: Proceedings of 8th Symposium on Fire and Forest Meteorological Society - Kalispell, MT (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Avolio, M.V., Di Gregorio, S., Lupiano, V., Trunfio, G.A. (2012). Simulation of Wildfire Spread Using Cellular Automata with Randomized Local Sources. In: Sirakoulis, G.C., Bandini, S. (eds) Cellular Automata. ACRI 2012. Lecture Notes in Computer Science, vol 7495. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33350-7_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33350-7_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33349-1

  • Online ISBN: 978-3-642-33350-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics