Skip to main content

A Theorem about the Algorithm of Minimization of Differences for Multicomponent Cellular Automata

  • Conference paper
Cellular Automata (ACRI 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7495))

Included in the following conference series:

Abstract

Multicomponent Cellular Automata, also known as Macroscopic Cellular Automata, characterize a methodological approach for modeling complex systems, that need many components both for the states (substates) to account for different properties of the cell and for the transition function (elementary processes) in order to account for various different dynamics. Many applications were developed for modeling complex natural phenomena, particularly macroscopic ones, e.g., large scale surface flows. Minimizing the differences of a certain quantity in the cell neighborhood, by distribution from the cell to the other neighboring cells, is a basic component of many transition functions in this context. The Algorithm for the Minimization of Differences (AMD) was applied in different ways to many models. A fundamental theorem about AMD is proved in this paper; it shows that AMD properties are more extended than the previous demonstrated theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. von Neumann, J.: Theory of self reproducing automata. Uni. of Illinois Press, Urbana (1966)

    Google Scholar 

  2. Ilachinsky, A.: Cellular Automata, A discrete Universe. World Scientific, New Jersey (2001)

    Google Scholar 

  3. Toffoli, T.: Cellular Automata as an alternative to (rather than an approximation of) differential equations in modeling physics. Physica 10D, 117–127 (1984)

    MathSciNet  Google Scholar 

  4. Di Gregorio, S., Serra, R.: An empirical method for modelling and simulating some complex macroscopic phenomena by cellular automata. FGCS 16, 259–271 (1999)

    Article  Google Scholar 

  5. Succi, A.S.: The Lattice Boltzmann Equation for Fluid Dynamicsand Beyond. Oxford University Press, Oxford (2001)

    Google Scholar 

  6. Spataro, W., Avolio, M.V., Lupiano, V., Trunfio, G.A., Rongo, R., D’Ambrosio, D.: The latest release of the lava flows simulation model SCIARA: First application to Mt Etna (Italy) and solution of the anisotropic flow direction problem on an ideal surface. Procedia Computer Science 1(1), 17–26 (2010)

    Article  Google Scholar 

  7. Di Gregorio, S., Festa, D.C.: Cellular Automata for FreewayTraffic. In: Proceedings of the First International Conference “Applied Modelling and Simulation”, Lyon, France, September 7-11, vol. V, pp. 133–136 (1981)

    Google Scholar 

  8. Di Gregorio, S., Festa, D.C.: A global model for freeway traffic simulation. In: Contributed papers of ICTS Int. Meeting Transportation Research: State of the Art, Perspectives and International Cooperation, Amalfi, Italy, November 11-14, vol. I, pp. 277–283 (1981)

    Google Scholar 

  9. Crisci, G.M., Di Gregorio, S., Pindaro, O., Ranieri, S.A.: Lava flow simulation by a discrete cellular model: first implementation. Int. Journal of Modelling and Simulation 6, 137–140 (1986)

    Google Scholar 

  10. Barca, D., Di Gregorio, S., Nicoletta, F.P., Sorriso Valvo, M.: Flow-typelandslidemodelling by cellular automata. In: Proceedings, A.M.S. International Congress Modelling and Simulation, Cairo, Egypt, pp. 3–7 (March 1987)

    Google Scholar 

  11. Barca, D., Crisci, G.M., Di Gregorio, S., Nicoletta, F.: Chapter Twelve of Active Lavas. In: Kilburn, Luongo (eds.) Cellular Automata Methods for Modeling Lava Flow: Simulation of the 1986-1987 Eruption, Mount Etna, Sicily, pp. 291–309. UCL Press London (1993)

    Google Scholar 

  12. Barca, D., Crisci, G.M., Di Gregorio, S., Nicoletta, F.: Cellular Automata for simulating lava flows: a method and examples of the Etnean eruptions. Transport Theory and Statistical Physics 23(1-3), 195–232 (1994)

    Article  Google Scholar 

  13. Di Gregorio, S., Nicoletta, F., Rongo, R., Sorriso-Valvo, M., Spataro, W.: A two-dimensional Cellular Automata Model for Landslide Simulation. In: Gruber, R., Tommasini, M. (eds.) Proceedings of 6th Joint EPS-APS International Conference on Physics Computing, PC 1994, Lugano, Switzerland, August 22-26, pp. 523–526 (1994)

    Google Scholar 

  14. Di Gregorio, S., Rongo, R., Siciliano, C., Sorriso-Valvo, M., Spataro, W.: Mount Ontakelandslidesimulation by the cellularautomata model SCIDDICA-3. Physics and Chemistry of the Earth (A) 24(2), 97–100 (1999)

    Article  Google Scholar 

  15. Di Gregorio, S., Serra, R., Villani, M.: A Cellular Automata Model of SoilBioremediation. Complex Systems 11, 31–54 (1997)

    Google Scholar 

  16. Avolio, M.V.: Esplicitazione della velocità per la modellizzazione e simulazione di flussi di superficie macroscopici con automi cellulari ed applicazioni alle colate di lava di tipo etneo. Ph. D. Thesis (in Italian). Dept. of Mathematics, University of Calabria (2004)

    Google Scholar 

  17. Weimar, J.R.: Simulation with Cellular Automata. Logos-Verlag, Berlin (1998) ISBN 3-89722-026-1

    Google Scholar 

  18. Crisci, G.M., Di Gregorio, S., Nicoletta, F., Rongo, R., Spataro, W.: Analysing lava risk for the Etnean area by Cellular Automata methods of simulation. Natural Hazards 20, 215–229 (1999)

    Article  Google Scholar 

  19. Crisci, G.M., Di Gregorio, S., Rongo, R., Scarpelli, M., Spataro, W., Calvari, S.: Revisiting the 1669 Etnean eruptive crisis using a cellular automata model and implications for volcanic hazard in the Catania area. Journal of Volcanology and Geothermal Research 123(1-2), 211–230 (2003)

    Article  Google Scholar 

  20. Crisci, G.M., Di Gregorio, S., Rongo, R., Spataro, W.: The simulation model SCIARA: the 1991 and 2001 at Mount Etna. Journal of Vulcanogy and Geothermal Research 132(2-3), 253–267 (2004)

    Article  Google Scholar 

  21. Avolio, M.V., Crisci, G.M., Di Gregorio, S., Rongo, R., Spataro, W., Trunfio, G.A.: SCIARA γ2: an improved Cellular Automata model for Lava Flows and Applications to the 2002 Etnean crisis. Computers & Geosciences 32, 897–911 (2006)

    Article  Google Scholar 

  22. Spataro, W., D’Ambrosio, D., Avolio, M.V., Trunfio, G.A., Di Gregorio, S.: Lava Flow Hazard Evaluation Through Cellular Automata and Genetic Algorithms: an Application to Mt Etna Volcano. Fundamenta Informaticae 87(2), 247–268 (2008)

    MATH  Google Scholar 

  23. Crisci, G.M., Avolio, M.V., Behncke, B., D’Ambrosio, D., Di Gregorio, S., Lupiano, V., Neri, M., Rongo, R., Spataro, W.: Predicting the impact of lava flowsat Mount Etna. Italy. J. Geophys. Res. 115, B04203 (2010), doi:10.1029/2009JB006431

    Google Scholar 

  24. Di Gregorio, S., Serra, R., Villani, M.: Applying cellular automata to complex environmental problems: the simulation of the bioremediation of contaminated soils. Theoretical Computer Science 217(1), 131–156 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  25. Avolio, M.V., Di Gregorio, S., Mantovani, F., Pasuto, A., Rongo, R., Silvano, S., Spataro, W.: Simulation of the 1992 Tessinalandslide by a Cellular Automata model and future hazardscenarios. JAG (International Journal of Applied Earth Observation and Geoinformation) 2(1), 41–50 (2000)

    Article  Google Scholar 

  26. D’Ambrosio, D., Di Gregorio, S., Iovine, G., Lupiano, V., Merenda, L., Rongo, R., Spataro, W.: Simulating the Curti-Sarno Debris Flow through Cellular Automata: the model SCIDDICA (release S2). Physics and Chemistry of the Earth 27, 1577–1585 (2002)

    Article  Google Scholar 

  27. D’Ambrosio, D., Di Gregorio, S., Iovine, G., Lupiano, V., Rongo, R., Spataro, W.: First simulations of the Sarno debris flows through cellular automata modelling. Geomorphology 54(1-2), 91–117 (2003)

    Article  Google Scholar 

  28. Iovine, G., Di Gregorio, S., Lupiano, V.: Debris-flow susceptibility assessment through cellular automata modeling: an example from 15–16 disaster at Cervinara and San Martino Valle Caudina (Campania, southern Italy). Natural Hazards and Earth System Sciences 3, 457–468 (2003)

    Article  Google Scholar 

  29. D’Ambrosio, D., Di Gregorio, S., Iovine, G.: Simulating debris flows through a hexagonal cellular automata model: SCIDDICA S3-hex. Natural Hazards and Earth System Sciences 3, 545–559 (2003)

    Article  Google Scholar 

  30. Iovine, G., D’Ambrosio, D., Di Gregorio, S.: Applying genetic algorithms for calibrating a hexagonal cellular automata model for the simulation of debris flows characterised by strong inertial effects. Geomorphology 66, 287–303 (2005)

    Article  Google Scholar 

  31. Avolio, M.V., Lupiano, V., Mazzanti, P., Di Gregorio, S.: Modelling Combined Subaerial-Subaqueous Flow-Like Landslides by Cellular Automata. In: Umeo, H., Morishita, S., Nishinari, K., Komatsuzaki, T., Bandini, S. (eds.) ACRI 2008. LNCS, vol. 5191, pp. 329–336. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  32. D’Ambrosio, D., Iovine, G., Spataro, W., Miyamoto, H.: A macroscopic collisional model for debris-flows simulation. Environmental Modelling and Software 22(10), 1417–1436 (2007)

    Article  Google Scholar 

  33. D’Ambrosio, D., Di Gregorio, S., Gabriele, S., Gaudio, R.: A Cellular Automata Model for SoilErosion by Water. Physics and Chemistry of the Earth 26(1), 33–39 (2001)

    Article  Google Scholar 

  34. Avolio, M.V., Crisci, G.M., Di Gregorio, S., Rongo, R., Spataro, W., D’Ambrosio, D.: Pyroclastic Flows Modelling using Cellular Automata. Computers & Geosciences 32, 876–889 (2006)

    Article  Google Scholar 

  35. Avolio, M.V., Errera, A., Lupiano, V., Mazzanti, P., Di Gregorio, S.: Development and Calibration of a Preliminary Cellular Automata Model for Snow Avalanches. In: Bandini, S., Manzoni, S., Umeo, H., Vizzari, G. (eds.) ACRI 2010. LNCS, vol. 6350, pp. 83–94. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  36. Avolio, M.V., Errera, A., Lupiano, V., Mazzanti, P., Di Gregorio, S.: A Cellular Automata Model for SnowAvalanches. To appear in Journal of Cellular Automata (2012)

    Google Scholar 

  37. Avolio, M.V., Crisci, G.M., D’Ambrosio, D., Di Gregorio, S., Iovine, G., Rongo, R., Spataro, W.: An extended notion of Cellular Automata for surface flows modelling. WSEAS Transactions on Computers 2(4), 1080–1085 (2003)

    Google Scholar 

  38. D’Ambrosio, D., Spataro, W.: Parallel evolutionary modelling of geological processes. Parallel Computing 33(3), 186–212 (2007)

    Article  MathSciNet  Google Scholar 

  39. Piscitelli, M., Badalamenti, F., D’Anna, G., Di Gregorio, S.: A Cellular Automata Model of Fish-Aggregating-Devices Performance. In: Proceedings of EUROSIM 2001 Delft, CdRom, The Netherlands, June 26-29 (2001) ISBN: 90-806441-1-0

    Google Scholar 

  40. Pommois, P., Brunetti, P., Bruno, V., Mazzei, A., Baldacchini, V., Di Gregorio, S.: FlySim: A Cellular Automata Model of Bactrocera Oleae (Olive Fruit Fly) Infestation and First Simulations. In: El Yacoubi, S., Chopard, B., Bandini, S. (eds.) ACRI 2006. LNCS, vol. 4173, pp. 311–320. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  41. Arai, K., Basuki, A.: Simulation of Hot Mudflow Disaster with Cell Automaton and Verification with Satellite Imagery Data. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Science, Part 8 38, 237–242 (2010)

    Google Scholar 

  42. Vanwalleghem, T., Jiménez-Hornero, F., Giráldez, J.V., Laguna, A.M.: Simulation of long-term soil redistribution by tillage using a cellular automata model. Earth Surf. Process. Landforms 35, 761–770 (2010)

    Google Scholar 

  43. Valette, G., Prévost, S., Laurent, L., Léonard, J.: SoDA project: A simulation of soil surface degradation by rainfall. Computers & Graphics 30, 494–506 (2006)

    Article  Google Scholar 

  44. Barpi, F., Borri-Brunetto, M., Delli Veneri, L.: Cellular-Automata Model for Dense-SnowAvalanches. Journal of Cold Regions Engineering 21(4), 121–140 (2007)

    Article  Google Scholar 

  45. Salles, T., Lopez, S., Cacas, M.C., Mulder, T.: Cellular automata model of density currents. Geomorphology 88(1-2), 1–20 (2007)

    Article  Google Scholar 

  46. Topa, P.: A Cellular Automata Approach for Modelling Complex River Systems. In: El Yacoubi, S., Chopard, B., Bandini, S. (eds.) ACRI 2006. LNCS, vol. 4173, pp. 482–491. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  47. Hungr, O.: A model for the runout analysis of rapid flow slides, debris flows, and avalanches. Can. Geotech. J. 32, 610–623 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Avolio, M.V., Di Gregorio, S., Spataro, W., Trunfio, G.A. (2012). A Theorem about the Algorithm of Minimization of Differences for Multicomponent Cellular Automata. In: Sirakoulis, G.C., Bandini, S. (eds) Cellular Automata. ACRI 2012. Lecture Notes in Computer Science, vol 7495. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33350-7_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33350-7_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33349-1

  • Online ISBN: 978-3-642-33350-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics