Skip to main content

Efficient Robot Path Planning in the Presence of Dynamically Expanding Obstacles

  • Conference paper
Cellular Automata (ACRI 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7495))

Included in the following conference series:

Abstract

This paper presents a framework for robot path planning based on the A* search algorithm in the presence of dynamically expanding obstacles. The overall method follows Cellular Automata (CA) based rules, exploiting the discrete nature of CAs for both obstacle and robot state spaces. For the search strategy, the discrete properties of the A* algorithm were utilized, allowing a seamless merging of both CA and A* theories. The proposed algorithm guarantees both a collision free and a cost efficient path to target with optimal computational cost. More particular, it expands the map state space with respect to time using adaptive time intervals in order to predict the necessary future expansion of obstacles for assuring both a safe and a minimum cost path. The proposed method can be considered as being a general framework in the sense that it can be applied to any arbitrary shaped obstacle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pradalier, C., Hermosillo, J., Koike, C., Braillon, C., Bessiere, P., Laugier, C.: The CyCab: a car-like robot navigating autonomously and safely among pedestrians. Robotics and Autonomoys Systems 50(1), 51–68 (2005)

    Article  Google Scholar 

  2. Balaguer, C., Gimenez, A., Huete, A.J., Sabatini, A.M., Topping, M., Bolmsjo, G.: The MATS robot: service climbing robot for personal assistance. IEEE Robotics & Automation Magazine 13, 51–58 (2006)

    Article  Google Scholar 

  3. Kyriakoulis, N., Gasteratos, A., Amanatiadis, A.: Comparison of data fusion techniques for robot navigation. In: Advances in Artificial Intelligence, pp. 547–550 (2006)

    Google Scholar 

  4. Baohua, J., Liang, Z.: A Path Planning Method of Contingency Logistics Based on Max-Min Ant System. In: Proceedings of the 2010 Asia-Pacific Conference on Wearable Computing Systems, pp. 311–314 (2010)

    Google Scholar 

  5. Chien, S., Wang, H., Lewis, M.: Human vs. algorithmic path planning for search and rescue by robot teams. In: 54th Annual Meeting of the Human Factors and Ergonomics Society, pp. 379–383 (2011)

    Google Scholar 

  6. Hwang, Y., Ahuja, N.: Gross motion planning –A survey. ACM Comput. Surv. 24, 219–291 (1992)

    Article  Google Scholar 

  7. Rao, N.S.V.: An algorithmic framework for navigation in unknown terrains. IEEE Trans. Comput., 37–43 (1989)

    Google Scholar 

  8. Sugihara, K.: An approximation of generalized Voronoi diagrams by ordinary Voronoi diagrams. Graphical Models and Image Processing 55, 522–531 (1993)

    Article  Google Scholar 

  9. Tzionas, P.G., Thanailakis, A., Tsalides, P.G.: Collision-Free Path planning for a Diamond-Shaped Robot Using Two-Dimensional Cellular Automata. IEEE Robotics & Automation Magazine 13, 237–250 (1997)

    Google Scholar 

  10. Wang, C., Soh, Y.C., Wang, H., Wang, H.: A hierarchical genetic algorithm for path planning in a static enviroment with obstacles. In: Canadian Conference on Electrical and Computer Engineering, IEEE CCECE 2002, vol. 3, pp. 1652–1657 (2002)

    Google Scholar 

  11. Noborio, H., Naniwa, T., Arimoto, S.: A feasible motion planning algorithm for a mobile robot an a quadtree representation. In: Proc. IEEE Int. Conf. Robot. Automat., pp. 237–332 (1989)

    Google Scholar 

  12. Jahabin, M.R., Fallside, F.: Path planning using a wave simulation technique in the configuration space. In: Gero, J.S. (ed.) Artificial Intelligence in Engineering: Robotics and Processes. Computational Mechanics Publications, Southhampton (1988)

    Google Scholar 

  13. Zelinsky, A.: Using path transforms to guide the search for findpath in 2D. Int. J. Robot., 315–325 (1994)

    Google Scholar 

  14. Aleksander, I., Hanna, F.K.: Automata Theory: An engineerinng Approach. Crane Russak, New York (1975)

    Google Scholar 

  15. Gray, L.: A Mathematician Looks at Wolfram’s New Kind of Science. Not. Amer. Math., 200–211 (2003)

    Google Scholar 

  16. Hart, P.E., Nilsson, N.J., Raphael, B.: A Formal Basis for the Heuristic Determination of Minimum cost paths. IEEE Trans. on Systems Science and Cybernetics, SSC 2004, pp. 100–107 (2004)

    Google Scholar 

  17. Dehter, R., Judea, P.: Generalized best-first search strategies and the optimality of A*. Journal of the ACM, 505–536

    Google Scholar 

  18. Pearl, J.: Heuristics: Intelligent Search Strategies for Computer Problem Solving. Addison-Wesley

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Charalampous, K., Amanatiadis, A., Gasteratos, A. (2012). Efficient Robot Path Planning in the Presence of Dynamically Expanding Obstacles. In: Sirakoulis, G.C., Bandini, S. (eds) Cellular Automata. ACRI 2012. Lecture Notes in Computer Science, vol 7495. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33350-7_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33350-7_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33349-1

  • Online ISBN: 978-3-642-33350-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics