Skip to main content

Cellular Model of Room Evacuation Based on Occupancy and Movement Prediction

  • Conference paper
Cellular Automata (ACRI 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7495))

Included in the following conference series:

Abstract

The rule-based CA for simulating the evacuation process of single room with one exit is presented. Analogically to the Floor-Field model, the presented model is based on the movement on rectangular lattice, driven by the potential field generated by the exit. Several ideas of decision-making allowing the agent to choose an occupied cell are implemented, to reflect the observed behaviour in high densities. The velocity of pedestrians is represented by the updating frequency of the individuals. To calibrate model parameters, an experiment “leaving the room” was organized. Based on the observed behaviour, the influence of parameters is discussed and several modifications are suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Georgoudas, I.G., Koltsidas, G., Sirakoulis, G.C., Andreadis, I.T.: A Cellular Automaton Model for Crowd Evacuation and Its Auto-Defined Obstacle Avoidance Attribute. In: Bandini, S., Manzoni, S., Umeo, H., Vizzari, G., et al. (eds.) ACRI 2010. LNCS, vol. 6350, pp. 455–464. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  2. Helbing, D., Farkas, I., Vicsek, T.: Simulating dynamical features of escape panic. Nature 407, 487–490 (2000)

    Article  Google Scholar 

  3. Helbing, D., Molnar, P.: Social force model for pedestrian dynamics. Phys. Rev. E 51(5), 4282–4286 (1995)

    Google Scholar 

  4. Henein, C.M., White, T.: Macroscopic effects of microscopic forces between agents in crowd models. Physica A 373, 694–712 (2007)

    Article  Google Scholar 

  5. Kirchner, A., Schadschneider, A.: Simulation of evacuation processes using a bionics-inspired cellular automaton model for pedestrian dynamics. Physica A 312, 260–276 (2002)

    Article  MATH  Google Scholar 

  6. Klüpfel, H., Schreckenberg, M., Meyer-König, T.: Models for Crowd Movement and Egress Simulation. In: Traffic and Granular Flow 2003, pp. 357–372 (2005)

    Google Scholar 

  7. Klüpfel, H.: A Cellular Automaton Model for Crowd Movement and Egress Simulation. PhD. thesis, Universität Duisburg-Essen, Germany (2003)

    Google Scholar 

  8. Kretz, T., Kaufman, M., Schreckenberg, M.: Counterflow Extension for the F.A.S.T.-Model. In: Umeo, H., Morishita, S., Nishinari, K., Komatsuzaki, T., Bandini, S. (eds.) ACRI 2008. LNCS, vol. 5191, pp. 555–558. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  9. Kretz, T., Schreckenberg, M.: The F.A.S.T.-Model. In: El Yacoubi, S., Chopard, B., Bandini, S. (eds.) ACRI 2006. LNCS, vol. 4173, pp. 712–715. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  10. Kretz, T.: Pedestrian Traffic, Simulation and Experiments. PhD. thesis, Universität Duisburg-Essen, Germany (2007)

    Google Scholar 

  11. Nishinari, K., Kirchner, A., Namazi, A., Schadschneider, A.: Extended floor field CA model for evacuation dynamics. IEICE Trans. on Inf. and Syst. E87-D, 726–732 (2004)

    Google Scholar 

  12. Schadschneider, A., Chowdhury, D., Nishinari, K.: Stochastic transport in complex systems. Elsevier Science, Amsterdam (2010)

    Google Scholar 

  13. Schadschneider, A., Seyfried, A.: Empirical results for pedestrian dynamics and their implication for cellular automata models. In: Timmermans, H. (ed.) Pedestrian Behavior: Models, Data Collection and Applications. Emerald Group Publishing, Bingley (2009)

    Google Scholar 

  14. Schultz, M., Lehmann, S., Fricke, H.: A discrete microscopic model for pedestrian dynamics to manage emergency situations in airport terminals. In: Waldau, N., Gattermann, P., Knoflacher, H., Schreckenberg, M. (eds.) Pedestrian and Evacuation Dynamics 2005, pp. 369–375. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  15. Seyfried, A., Portz, A., Schadschneider, A.: Phase Coexistence in Congested States of Pedestrian Dynamics. In: Bandini, S., Manzoni, S., Umeo, H., Vizzari, G., et al. (eds.) ACRI 2010. LNCS, vol. 6350, pp. 496–505. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  16. Steffen, B.: A Modification of the Social Force Model by Foresight. In: Klingsch, W.W.F., Rogsch, C., Schadschneider, A., Schreckenberg, M. (eds.) Pedestrian and Evacuation Dynamics 2008, pp. 677–682. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  17. Sumaa, Y., Yanagisawab, D., Nishinari, K.: Anticipation effect in pedestrian dynamics: Modeling and experiments. Physica A 391, 248–263 (2012)

    Article  Google Scholar 

  18. Yamamoto, K., Kokubo, S., Nishinari, K.: Simulation for pedestrian dynamics by real-coded cellular automata (RCA). Physica A 379, 654–660 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hrabák, P., Bukáček, M., Krbálek, M. (2012). Cellular Model of Room Evacuation Based on Occupancy and Movement Prediction. In: Sirakoulis, G.C., Bandini, S. (eds) Cellular Automata. ACRI 2012. Lecture Notes in Computer Science, vol 7495. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33350-7_73

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33350-7_73

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33349-1

  • Online ISBN: 978-3-642-33350-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics