Skip to main content

An Attempt to Employ Genetic Fuzzy Systems to Predict from a Data Stream of Premises Transactions

  • Conference paper
Scalable Uncertainty Management (SUM 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7520))

Included in the following conference series:

Abstract

An approach to apply ensembles of genetic fuzzy systems, built over the chunks of a data stream, to aid in residential premises valuation was proposed. The approach consists in incremental expanding an ensemble by systematically generated models in the course of time. The output of aged component models produced for current data is updated according to a trend function reflecting the changes of premises prices since the moment of individual model generation. An experimental evaluation of the proposed method using real-world data taken from a dynamically changing real estate market revealed its advantage in terms of predictive accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alonso, J.M., Magdalena, L., González-Rodríguez, G.: Looking for a good fuzzy system interpretability index: An experimental approach. International Journal of Approximate Reasoning 51, 115–134 (2009)

    Article  MathSciNet  Google Scholar 

  2. Angelov, P.P., Filev, D.: An approach to online identification of Takagi-Sugeno fuzzy models. IEEE Transactions on Systems, Man and Cybernetics, part B 34(1), 484–498 (2004)

    Article  Google Scholar 

  3. Breiman, L.: Bagging Predictors. Machine Learning 24(2), 123–140 (1996)

    MathSciNet  MATH  Google Scholar 

  4. Brzeziński, D., Stefanowski, J.: Accuracy Updated Ensemble for Data Streams with Concept Drift. In: Corchado, E., Kurzyński, M., Woźniak, M. (eds.) HAIS 2011, Part II. LNCS (LNAI), vol. 6679, pp. 155–163. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  5. Bühlmann, P., Yu, B.: Analyzing bagging. Annals of Statistics 30, 927–961 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Castro, J.L., Delgado, M.: Fuzzy systems with defuzzification are universal approximators. IEEE Transactions on System, Man and Cybernetics 26, 149–152 (1996)

    Article  Google Scholar 

  7. Cordón, O., Gomide, F., Herrera, F., Hoffmann, F., Magdalena, L.: Ten years of genetic fuzzy systems: current framework and new trends. Fuzzy Sets and Systems 141, 5–31 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cordón, O., Herrera, F.: A Two-Stage Evolutionary Process for Designing TSK Fuzzy Rule-Based Systems. IEEE Tr. on Sys., Man, and Cyb.-Part B 29(6), 703–715 (1999)

    Article  Google Scholar 

  9. Elwell, R., Polikar, R.: Incremental Learning of Concept Drift in Nonstationary Environments. IEEE Transactions on Neural Networks 22(10), 1517–1531 (2011)

    Article  Google Scholar 

  10. Fumera, G., Roli, F., Serrau, A.: A theoretical analysis of bagging as a linear combination of classifiers. IEEE Transactions on Pattern Analysis and Machine Intelligence 30(7), 1293–1299 (2008)

    Article  Google Scholar 

  11. Gaber, M.M.: Advances in data stream mining. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 2(1), 79–85 (2012)

    Article  Google Scholar 

  12. Kempa, O., Lasota, T., Telec, Z., Trawiński, B.: Investigation of Bagging Ensembles of Genetic Neural Networks and Fuzzy Systems for Real Estate Appraisal. In: Nguyen, N.T., Kim, C.-G., Janiak, A. (eds.) ACIIDS 2011, Part II. LNCS (LNAI), vol. 6592, pp. 323–332. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  13. Kosko, B.: Fuzzy systems as universal approximators. IEEE Transactions on Computers 43(11), 1329–1333 (1994)

    Article  MATH  Google Scholar 

  14. Król, D., Lasota, T., Trawiński, B., Trawiński, K.: Investigation of Evolutionary Optimization Methods of TSK Fuzzy Model for Real Estate Appraisal. International Journal of Hybrid Intelligent Systems 5(3), 111–128 (2008)

    MATH  Google Scholar 

  15. Król, D., Szymański, M., Trawiński, B.: The recommendation mechanism in an internet information system with time impact coefficient. International Journal of Computer Science Applications 3(2), 65–80 (2006)

    Google Scholar 

  16. Kuncheva, L.I.: Classifier Ensembles for Changing Environments. In: Roli, F., Kittler, J., Windeatt, T. (eds.) MCS 2004. LNCS, vol. 3077, pp. 1–15. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  17. Lasota, T., Telec, Z., Trawiński, B., Trawiński, K.: Investigation of the eTS Evolving Fuzzy Systems Applied to Real Estate Appraisal. Journal of Multiple-Valued Logic and Soft Computing 17(2-3), 229–253 (2011)

    Google Scholar 

  18. Lasota, T., Telec, Z., Trawiński, G., Trawiński, B.: Empirical Comparison of Resampling Methods Using Genetic Fuzzy Systems for a Regression Problem. In: Yin, H., Wang, W., Rayward-Smith, V. (eds.) IDEAL 2011. LNCS, vol. 6936, pp. 17–24. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  19. Lughofer, E., Trawiński, B., Trawiński, K., Kempa, O., Lasota, T.: On Employing Fuzzy Modeling Algorithms for the Valuation of Residential Premises. Information Sciences 181, 5123–5142 (2011)

    Article  Google Scholar 

  20. Lughofer, E.: Evolving Fuzzy Systems – Methodologies, Advanced Concepts and Applications. STUDFUZZ, vol. 266. Springer, Heidelberg (2011)

    Book  MATH  Google Scholar 

  21. Lughofer, E.: FLEXFIS: A robust incremental learning approach for evolving TS fuzzy models. IEEE Transactions on Fuzzy Systems 16(6), 1393–1410 (2008)

    Article  Google Scholar 

  22. Maloof, M.A., Michalski, R.S.: Incremental learning with partial instance memory. Artificial Intelligence 154(1-2), 95–126 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Minku, L.L., White, A.P., Yao, X.: The Impact of Diversity on Online Ensemble Learning in the Presence of Concept Drift. IEEE Transactions on Knowledge and Data Engineering 22(5), 730–742 (2010)

    Article  Google Scholar 

  24. Schapire, R.E.: The strength of weak learnability. Mach. Learning 5(2), 197–227 (1990)

    Google Scholar 

  25. Tsymbal, A.: The problem of concept drift: Definitions and related work. Technical Report. Department of Computer Science, Trinity College, Dublin (2004)

    Google Scholar 

  26. Wang, H., Fan, W., Yu, P.S., Han, J.: Mining concept-drifting data streams using ensemble classifiers. In: Getoor, L., et al. (eds.) KDD 2003, pp. 226–235. ACM Press (2003)

    Google Scholar 

  27. Widmer, G., Kubat, M.: Learning in the presence of concept drift and hidden contexts. Machine Learning 23, 69–101 (1996)

    Google Scholar 

  28. Wolpert, D.H.: Stacked Generalization. Neural Networks 5(2), 241–259 (1992)

    Article  MathSciNet  Google Scholar 

  29. Zliobaite, I.: Learning under Concept Drift: an Overview. Technical Report. Faculty of Mathematics and Informatics. Vilnius University, Vilnius (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Trawiński, B., Lasota, T., Smętek, M., Trawiński, G. (2012). An Attempt to Employ Genetic Fuzzy Systems to Predict from a Data Stream of Premises Transactions. In: Hüllermeier, E., Link, S., Fober, T., Seeger, B. (eds) Scalable Uncertainty Management. SUM 2012. Lecture Notes in Computer Science(), vol 7520. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33362-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33362-0_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33361-3

  • Online ISBN: 978-3-642-33362-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics