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Abstract. We introduce games with probabilistic uncertainty, a natural model for controller synthesis in which
the controller observes the state of the system through imprecise sensors that provide correct information about
the current state with a fixed probability. That is, in each step, the sensors return an observed state, and given the
observed state, there is a probability distribution (due tothe estimation error) over the actual current state. The
controller must base its decision on the observed state (rather than the actual current state, which it does not know).
On the other hand, we assume that the environment can perfectly observe the current state. We show that our
model can be reduced in polynomial time to standard partial-observation stochastic games, and vice-versa. As a
consequence we establish the precise decidability frontier for the new class of games, and for most of the decidable
problems establish optimal complexity results.

1 Introduction

In a control system, a controller interacts with its environment through sensors and actuators. The controller observes
the state of the environment through a set of sensors, computes a control signal that depends on the history of observed
sensor readings, and feeds the control signal to the environment through actuators. The state of the environment is
then updated as a function of the control signal as well as a disturbance signal that models external inputs to the
environment. In areactivesetting, the sense-compute-actuate cycle repeats forever, resulting in an infinite trace of
environment states. The objective of the controller is to ensure that the trace belongs to a given specification of “good”
traces. The controller synthesis problem asks, given the dynamical law that specifies how the environment state changes
according to the controller inputs and external disturbances, and a specification of good traces, to synthesize a control
law that ensures that the environment traces are good, no matter how external disturbances behave.

Controller synthesis has been studied extensively for deterministic games withω-regular specifications [5,14,13].
In this setting, the problem is modeled as a game on a graph. The vertices of the graph represent system states, and
are divided into “controller states” and “disturbance states.” At a controller state, the controller chooses an outgoing
edge and moves to a neighboring vertex along this edge. At a disturbance state, the disturbance chooses an outgoing
edge and moves along this edge. This continues ad infinitum, defining a sequence of states. If this sequence satisfies
the specification, the controller wins; otherwise, the disturbance wins. The games are calledperfect observation, since
both players have exact knowledge of the current state and the history of the game.

The study of perfect-observation deterministic games havebeen extended to systems withpartial observation, in
which the controller can only observe part of the environment’s state [15,7], and tostochastic dynamics[12,8,10,11],
in which the state updates happen according to a probabilistic law.

The “standard model” of partial-observation stochastic games [7,3,2] is described as an extension to the above
graph model, by fixing an equivalence relation on the vertices (the “observation function”), and stipulating that the
controller only sees the equivalence class of the current vertex, not the particular vertex the state is in. In addition,the
transitions of the graph are stochastic: the controller andthe disturbance each choose some move, and the next vertex
is chosen according to a probability distribution based on the current vertex and the chosen move.

In this paper, we introduce a different, albeit natural, model of probabilistic uncertainty in controller synthesis.
Consider a state given byn bits. The sensors used to measure the state are typically notperfect, and observing the state
through the sensor results in some bits being flipped with some known probability (probabilistic noise). In applica-
tions where the controller observes the state bits through anetwork, then the probabilistic noise in the communication
channels results in bits being flipped with some known probability (according to the classical Shannon’s communica-
tion channel model). Thus, the controller observesn bits through the sensor, and this estimate defines a probability
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distribution over the state space for the current state. In contrast, we allow the disturbance to precisely observe the
state, corresponding to a worst case assumption on the disturbance. The objective of the controller is to find a strategy
that ensures that the system satisfies the specification under this probabilistic uncertainty on the current state. We dis-
tinguish between two models of the disturbance. In the first model, the disturbance observes the correct sequence of
states as well as both the observation of the controller and the sequence of controller moves. In the second model, the
disturbance observes the correct sequence of states as wellas the sequence of controller moves (but not the observation
of the controller). It turns out that the two models give riseto subtle differences in defining the probability measures
on the games, as well as different complexities in the solution algorithms.

Our model (which we refer to as games with probabilistic uncertainty) is inspired by analogous models of state
estimation under probabilistic noise in continuous control systems. We believe this model of games with probabilistic
uncertainty naturally captures the behavior of many sensor-based control systems. Intuitively, the standard model
of partial-observation games represent “partial but correct information” where the controller can observe correctly
only the firstk < n bits of the state (i.e., the observation is partial as the controller observes only a part of the
state bits, but the information about the observed state bits is always correct). In contrast, our model of games with
probabilistic uncertainty represent “complete but uncertain information” where the controller can observe all then bits
of the state but with uncertainty of observation (i.e., the controller can observe all the bits, but each bit is correct with
some probability). Since the type of uncertain informationin our model is very different from the standard models of
partial-observation games studied in the literature, the relationship between them is not immediate.

Our main contribution, along with the introduction of the natural model of games with probabilistic uncertainty, is
establishing the equivalence of the new class of games and partial-observation games. Our main technical result is a
polynomial-time reduction from this new model of games withprobabilistic uncertainty to standard partial-observation
games, and a converse reduction from partially-observableMarkov decision processes (POMDPs) to games with
probabilistic uncertainty. The results to establish the equivalence of the two classes of games which represent two
different notions of information (partial but correct vs complete but uncertain) are quite intricate. For example, forthe
new class of games the inductive definition of probability measure is subtle and different from the classical definition
of probability measure for probabilistic systems [17,9]. This is because the controller observes a history that can be
completely different from the actual history, whereas the environment (or disturbance) observes the actual history.
We first inductively define a probability measure of observedhistory, given the actual history, and use it to define the
probability measure inductively. We show how our polynomial constructions for reduction capture the subtleties in the
probability measure, and by establishing precise mapping of strategies (which is at the heart of the proof of correctness
of the reduction) we obtain the desired equivalence result.

In the positive direction, our reduction allows us to solve controller synthesis problems for games with proba-
bilistic uncertainty againstω-regular specifications, using algorithms of [7,2]. In the negative direction, we get lower
bounds on the hardness of problems by using known lower bounds for POMDPs using the hardness results of [1,6].
In particular, with our reductions we establish precisely the decidability frontier of games with probabilistic uncer-
tainty for various classes of parity objectives (a canonical form to expressω-regular specifications); and for most of
the decidable problems we establish EXPTIME-complete bounds, and in some cases 2EXPTIME upper bounds and
EXPTIME lower bounds (see Table 1). Moreover, our reductionallows the rich body of algorithms (such as symbolic
and anti-chain based algorithms [7,2]) for partial-observation games, along with any future algorithmic developments
for partial-observation games, to be applicable to solve games with probabilistic uncertainty. In summary, our results
provide precise decidability frontier, optimal complexity (in most cases), and algorithmic solutions for games with
probabilistic uncertainty, that is a natural model for control problems with state estimation under probabilistic noise.

2 Games with Probabilistic Uncertainty

In this section we introduce a class of games with probabilistic imperfect information, and call them games with
probabilistic uncertainty.

Probability distribution.A probability distributionon a finite setA is a functionκ : A → [0, 1] such that
∑

a∈A κ(a) =
1. We denote byD(A) the set of probability distributions onA.

Game structures with probabilistic uncertainty.A game structure with probabilistic uncertainty consists of a tuple
G = (L,ΣI , ΣO, ∆, un), where (a)L is a set oflocations; (b)ΣI andΣO are two sets of input and output alphabets,
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respectively; (c)∆ : L × ΣI × ΣO → D(L) is a probabilistic transition function that given a location, an input and
an output letter gives the probability distribution over the next locations; and (d)un : L → D(L) is theprobabilistic
uncertainty functionthat given the true current location describes the probability distribution of the observed location.
If un is the identity function we obtain perfect-observation games.

Intuitively, a game proceeds as follows. The game starts at some locationℓ ∈ L. Player 1 observes a state drawn
from the distributionun(ℓ), which represents a potentially faulty observation process. Intuitively, at every step the
player can observe the value of all variables that corresponds to the state of the game, but there is a probability that
the observed value of some variables is incorrect. Player 2 observes the “correct” stateℓ. Given the observation of the
history of the game so far, Player 1 picks an input alphabetσi ∈ Σi. Player 2 then picks an output letterσo ∈ Σo:
we consider two variants, (1) Player 2 only observes the history of correct locations and the moves of the players;
and (2) Player 2 observes the history of correct locations, the moves of the players, and also observes the history of
observed locations of Player 1. The state of the game is updated toℓ′ with probability∆(ℓ, σi, σo)(ℓ′). This process is
repeated ad infinitum.

Plays.A play of G is a sequenceρ = ℓ0σ
i
0σ

o
0ℓ1σ

i
1σ

o
1 . . . of locations, input letter, and output letter, such that forall

j ≥ 0we have∆(ℓj , σ
i
j , σ

o
j )(ℓj+1) > 0. Theprefix up toℓn of the playρ is denoted byρ(n), its lengthis |ρ(n)| = n+1

and itslast elementis Last(ρ(n)) = ℓn. The set of plays inG is denoted byPlays(G), and the set of corresponding
finite prefixes is denotedPrefs(G).

Strategies.A strategy for Player 1 observes the finite prefix of a play and then selects an input letter (pure strategies) or a
probability distribution over input letters inΣi. Formally, a pure strategy for Player 1 is a functionα : Prefs(G) → Σi,
and a randomized strategy for Player 1 is a functionα : Prefs(G) → D(Σi). Similarly, pure and randomized strategies
for Player 2 are defined as functionsβ : Prefs(G) × Σi → Σo andβ : Prefs(G) × Σi → D(Σo), respectively. Note
that Player 2 sees Player 1’s choice of input action at each step. In the case where Player 2 observes also the history of
observed locations, the pure and randomized strategies aredefined as functionsβ : Prefs(G) × Prefs(G) ×Σi → Σo

andβ : Prefs(G) × Prefs(G) × Σi → D(Σo), respectively, where the output letter is chosen based on the original
history and observed history. We refer to strategies that observes both histories as “all-powerful” strategies for Player 2.

Outcomes.The outcomeof two randomized strategiesα for Player 1 andβ for Player 2 from a locationℓ ∈ L is
the set of playsρ = ℓ0σ

i
0σ

o
0 . . . such that (1)ℓ = ℓ0, (2) there exists a sequenceℓ′0ℓ

′
1 . . . such thatun(ℓj)(ℓ′j) > 0

for eachj ≥ 0, (3) for eachj ≥ 0, we haveα(ℓ′0σ
i
0σ

o
0 . . . ℓ

′
j)(σ

i
j) > 0 andβ(ρ(j), σi

j)(σ
o
j ) > 0 (if β is an all-

powerful strategy, thenβ(ρ(j), ℓ′0σ
i
0σ

o
0ℓ

′
1 . . . ℓ

′
j , σ

i
j)(σ

o
j ) > 0), and∆(ℓj , σ

i
j , σ

o
j )(ℓj+1) > 0. The primed sequence

ℓ′0ℓ
′
1 . . . gives the sequence of observations made by Player 1 using theprobabilistic uncertainty function. Note that

this sequence may be incorrect with some probability due to probabilistic uncertainty in the observation. We denote
this set of plays asOutcome(G, ℓ, α, β). The outcome of two pure strategies is defined analogously, considering pure
strategies as degenerate randomized strategies which picka letter with probability one. Theoutcome setof the pure
(resp. randomized) strategyα for Player1 in G is the setOutcome1(G, ℓ, α) of playsρ such that there exists a pure
(resp. randomized) strategyβ for Player2 with ρ ∈ Outcome(G, ℓ, α, β). The outcome setOutcome2(G, ℓ, β) for
Player 2 is defined symmetrically.

Probability measure.Given strategiesα andβ, we define the probability measurePrα,βℓ0
(·). The definition of the

probability measure is subtle and non-standard as the prefixthat Player 1 observes can be completely different from
the original history. For a finite prefixρ ∈ Prefs(G), letCone(ρ) denote the set of plays withρ as prefix. We will define
Prα,βℓ0

(·) for cones, and then by Caratheodory extension theorem [4] there is a unique extension to all measurable sets
of paths. To define the probability measure we also need to define a functionObsSeq(ρ), that given a finite prefixρ,
gives the probability distribution over finite prefixesρ′, such thatObsSeq(ρ)(ρ′) denotes the probability of observing
ρ′ given the correct prefix isρ. The base case is as follows:

Prα,βℓ0
(Cone(ℓ0)) = 1; ObsSeq(ℓ0)(ℓ

′) = un(ℓ0)(ℓ
′).

The inductive definition ofObsSeq is as follows: for a prefixρ of lengthn+ 1

ObsSeq(ρσi
nσ

o
nℓn+1)(ρ

′σi
nσ

o
nℓ

′
n+1) = ObsSeq(ρ)(ρ′) · un(ℓn+1)(ℓ

′
n+1)

Given a sequenceρ = ℓ0σ
i
0σ

o
0ℓ1σ

i
1σ

o
1 . . . ℓn, we defineActMt(ρ) = {ρ̃ = ℓ̃0σ̃

i
0σ̃

o
0ℓ1σ̃

i
1σ̃

o
1 . . . ℓ̃n | ∀1 ≤ j ≤ n −

1. σ̃i
j = σi

j andσ̃o
j = σo

j } the sequences of same length asρ such that the sequence of input and output letter matches
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(i.e., the set of action-matching prefixes). Note that for non action-matching prefixes the observation sequence function
always assigns probability zero. The inductive case for theprobability measure is as follows: for a prefixρ of length
n+ 1 with last stateℓn, we have

Prα,βℓ0
(Cone(ρσi

nσ
o
nℓn+1)) =

Prα,βℓ0
(Cone(ρ)) ·

( ∑

ρ′∈ActMt(ρ)

ObsSeq(ρ)(ρ′) · α(ρ′)(σi
n) · β(ρσ

i
n)(σ

o
n) ·∆(ℓn, σ

i
n, σ

o
n)(ℓn+1)

)
;

i.e.,ObsSeq(ρ)(ρ′) gives the probability to observeρ′, thenα(ρ′)(σi
n) denotes the probability to playσi

n given the
strategy and observed sequenceρ′, and since Player 2 observes the correct sequence the probability to play σo

n is given
by β(ρσi

n)(σ
o
n) (Player 2 observesρ), and the final term∆(ℓn, σ

i
n, σ

o
n)(ℓn+1) gives the transition probability. Ifβ is

an all-powerful strategy, thenβ observes both the correct historyρ and the observed historyρ′, and then the definition
is as follows:

Prα,βℓ0
(Cone(ρσi

nσ
0
nℓn+1)) =

Prα,βℓ0
(Cone(ρ)) ·

( ∑

ρ′∈ActMt(ρ)

ObsSeq(ρ)(ρ′) · α(ρ′)(σi
n) · β(ρ, ρ

′, σi
n)(σ

o
n) ·∆(ℓn, σ

i
n, σ

o
n)(ℓn+1)

)
.

Winning objectives.An objectivefor Player1 in G is a setφ ⊆ Plays(G) of plays. A playρ ∈ Plays(G) satisfiesthe
objectiveφ, denotedρ |= φ, if ρ ∈ φ. We considerω-regular objectives specified as parity objectives (a canonical form
to express allω-regular objectives [16]). For a playρ = ℓ0σ

i
0σ

o
0 . . ., we denote byρk thek-th locationℓk of the play

and denote byInf(ρ) the set of locations that occur infinitely often inρ, that is,Inf(ρ) = {ℓ | ∀i∃j : j > i andℓj = ℓ}.
We consider the following classes of objectives.

1. Reachability and safety objectives.Given a setT ⊆ L of target locations, thereachabilityobjectiveReach(T )
requires that a location inT be visited at least once, that is,Reach(T ) = {ρ | ∃k ≥ 0 · ρk ∈ T }. Dually, the
safetyobjectiveSafe(T ) requires that only states inT be visited. Formally,Safe(T ) = {ρ | ∀k ≥ 0 · ρk ∈ T }.

2. Büchi and coB̈uchi objectives.Let T ⊆ L be a set of target locations. TheBüchiobjectiveBuchi(T ) requires that
a state inT be visited infinitely often, that is,Buchi(T ) = {ρ | Inf(ρ) ∩ T 6= ∅}. Dually, thecoBüchi objective
coBuchi(T ) requires that only states inT be visited infinitely often. Formally,coBuchi(T ) = {ρ | Inf(ρ) ⊆ T }.

3. Parity objectives.Ford ∈ N, let p : L → {0, 1, . . . , d} be apriority function, which maps each state to a nonneg-
ative integer priority. Theparity objectiveParity(p) requires that the minimum priority that occurs infinitely often
be even. Formally,Parity(p) = {ρ | min{p(ℓ) | ℓ ∈ Inf(ρ)} is even}. The Büchi and coBüchi objectives are the
special cases of parity objectives with two priorities,p : L → {0, 1} andp : L → {1, 2}, respectively.

Sure, almost-sure and positive winning.An eventis a measurable set of plays, and given strategiesα andβ for the
two players, the probabilities of events are uniquely defined. For an objectiveφ, assumed to be Borel, we denote by
Prα,βℓ (φ) the probability thatφ is satisfied by the play obtained from the starting locationℓ when the strategiesα andβ
are used. Given a gameG, an objectiveφ, and a locationℓ, we consider the following winning modes: (1) a strategyα

for Player 1 issure winningfor the objectiveφ from ℓ ∈ L if Outcome(G, ℓ, α, β) ⊆ φ for all strategiesβ for Player2;
(2) a strategyα for Player1 is almost-sure winningfor the objectiveφ from ℓ ∈ L if Prα,βℓ (φ) = 1 for all strategiesβ
for Player2; and (3) a strategyα for Player1 is positive winningfor the objectiveφ from ℓ ∈ L if Prα,βℓ (φ) > 0 for
all strategiesβ for Player2.

Qualitative analysis of a game consists of the computation of the sure, almost-sure and positive winning sets.
The sure (resp. almost-sure and positive) winning decisionproblem for an objective consists of a game and a starting
locationℓ, and asks whether there is a sure (resp. almost-sure and positive) winning strategy fromℓ.

3 Partial-observation Stochastic Games

We now recall the usual definition of partial-observation games and their subclasses. We focus on partial-observation
turn-based probabilistic games, where at each round one of the players is in charge of choosing the next action and the
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transition function is probabilistic. We will present a polynomial time reduction of games with probabilistic uncertainty
to these games.

Partial-observation games.A partial-observation stochastic game(for short partial-observation game or simply a
game) is a tupleG = 〈S1 ∪ S2, A1, A2, δ1 ∪ δ2,O1,O2〉 with the following components:

1. (State space).S = S1 ∪ S2 is a finite set of states, whereS1 ∩ S2 = ∅ (i.e.,S1 andS2 are disjoint), states inS1

are Player 1 states, and states inS2 are Player 2 states.
2. (Actions).Ai (i = 1, 2) is a finite set of actions for Playeri.
3. (Transition function).Fori ∈ {1, 2}, the probabilistic transition function for Playeri is the functionδi : Si×Ai →

D(S3−i) that maps a statesi ∈ Si and an actionai ∈ Ai to the probability distributionδi(si, ai) over the successor
states inS3−i (i.e., games are alternating).

4. (Observations).O1 ⊆ 2S is a finite set of observations for Player1 that partitions the state spaceS, and similarly
O2 is the observations for Player 2. These partitions uniquelydefine functionsobsi : S → Oi, for i ∈ {1, 2}, that
map each state to its observation such thats ∈ obsi(s) for all s ∈ S. We will also consider the special case of
one-sided games, where Player 2 is perfectly informed (has complete observation), i.e.,O2 = S, andobs2(s) = s

for all s ∈ S (i.e., the partition consists of singleton states).

Special Class: POMDPs.We will consider one special class of partial-observation games calledpartial-observable
Markov decision processes(POMDPs), where the action set for Player 2 is a singleton (i.e., there is effectively only
Player 1 and stochastic transitions). Hence we will omit theaction set and observation for Player 2 and represent a
POMDP as the following tupleG = 〈S,A, δ,O〉, whereδ : S ×A → D(S).

Plays.In a game, in each turn, fori ∈ {1, 2}, if the current states is in Si, then Playeri chooses an actiona ∈ Ai,
and the successor state is chosen by sampling the probability distributionδi(s, a). A play in G is an infinite sequence
of states and actionsρ = s0a0s1a1 . . . such that for allj ≥ 0, if sj ∈ Si, for i ∈ {1, 2}, thenaj ∈ Ai such
that δi(sj , aj)(sj+1) > 0. The definitions of prefix and length are analogous to the definitions in Section 2. For
i ∈ {1, 2}, we denote byPrefsi(G) the set of finite prefixes inG that end in a state inSi. Theobservation sequence
of ρ = s0a0s1a1 . . . for Playeri (i = 1, 2) is the unique infinite sequence of observations and actions, i.e.,obs(ρ) =
o0a0o1a1o2 . . . such thatsj ∈ oj for all j ≥ 0. The observation sequence for finite sequences (prefix of plays) is
defined analogously.

Strategies.A pure strategyin G for Player1 is a functionα : Prefs1(G) → A1. A randomized strategyin G for
Player1 is a functionα : Prefs1(G) → D(A1). A (pure or randomized) strategyα for Player1 is observation-based
if for all prefixesρ, ρ′ ∈ Prefs1(G), if obs(ρ) = obs(ρ′), thenα(ρ) = α(ρ′). We omit analogous definitions of
strategies for Player2. We denote byAG, AO

G, AP
G, BG, BO

G, BP
G the set of all Player-1 strategies inG, the set of all

observation-based Player-1 strategies, the set of all pure Player-1 strategies, the set of all Player-2 strategies inG, the
set of all observation-based Player-2 strategies, and the set of all pure Player-2 strategies, respectively. In the setting
where Player1 has partial-observation and Player2 has complete observation, the setBG of all strategies coincides
with the setBO

G of all observation-based strategies. We will require the players to play observation-based strategies.

Outcomes.The outcomeof two randomized strategiesα (for Player1) andβ (for Player2) from a states in G

is the set of playsρ = s0a0s1a1 . . . ∈ Plays(G), with s0 = s, where for allj ≥ 0, if sj ∈ S1 (resp.sj ∈
S2), thenα(ρ(j))(aj) > 0 (resp.β(ρ(j))(aj) > 0) andδ1(sj , aj)(sj+1) > 0 (resp.δ2(sj , aj)(sj+1) > 0). This
set is denotedOutcome(G, s, α, β). The outcome of two pure strategies is defined analogously byviewing pure
strategies as randomized strategies that play their chosenaction with probability one. Theoutcome setof the pure
(resp. randomized) strategyα for Player1 in G is the setOutcome1(G, s, α) of playsρ such that there exists a pure
(resp. randomized) strategyβ for Player2 with ρ ∈ Outcome(G, s, α, β). The outcome setOutcome2(G, s, β) for
Player 2 is defined symmetrically.

Probability measure.We define the probability measurePrα,βs (·) as follows: for a finite prefixρ, let Cone(ρ) denote
the set of plays withρ as prefix. Then we havePrα,βs (Cone(s)) = 1, and for a prefix of lengthn ending in a Player 1
statesn we have

Prα,βs (Cone(ρansn+1)) = Prα,βs (Cone(ρ)) · α(ρ)(an) · δ1(sn, an)(sn+1);
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and the definition whensn is a Player 2 state is similar. For a setQ of finite prefixes, we writePrα,βs (Cone(Q)) for
Prα,βs (

⋃
ρ∈Q Cone(ρ)).

The winning modes sure, almost-sure, and positive are defined analogously to Section 2, where we restrict the play-
ers to play an observation-based strategy. From the resultsof [7,2,1,3,6] we obtain the following theorem summarizing
the results for partial-observation games and POMDPs.

Theorem 1 ([7,2,1,3,6]).The following assertions hold:

1. (One-sided games and POMDPs).The sure, almost-sure and positive winning for safety objectives; the sure and
almost-sure winning for reachability objectives and Büchi objectives; the sure and positive winning for coBüchi
objectives; and the sure winning for parity objectives are EXPTIME-complete for one-sided partial-observation
games (Player 2 perfectly informed) and POMDPs. The positive winning problem for reachability objectives is
PTIME-complete both for one-sided partial-observation games and POMDPs.

2. (General partial-observation games).The sure, almost-sure winning for safety objectives, the sure winning for
parity objectives are EXPTIME-complete for partial-observation games; the almost-sure winning for reachability
objectives and B̈uchi objectives, and the positive winning for safety and coBüchi objectives are 2EXPTIME-
complete for partial-observation games. The positive winning problem for reachability objectives is EXPTIME-
complete.

3. (Undecidability results).The positive winning problem for Büchi objectives, the almost-sure winning problem for
coBüchi objectives, and the positive and almost-sure winning problems for parity objectives are undecidable for
POMDPs.

4 Reduction: Games with Probabilistic Uncertainty to Partial-observation Games

We now present a reduction of games with probabilistic uncertainty to classical partial-observation games. LetG =
(L,ΣI , ΣO, ∆, un) be a game with probabilistic uncertainty and we construct a partial-observation gameH = (L ×
L ∪ L × L × ΣI , A1 = ΣI , A2 = ΣO, δ = δ1 ∪ δ2,O1,O2) as follows (below asδ1 andδ2 would be clear from
context, we simply useδ for simplicity):

1. The transition functionδ1 is deterministic and for(ℓ1, ℓ2) ∈ L× L andσI ∈ ΣI we have

δ((ℓ1, ℓ2), σI) = (ℓ1, ℓ2, σI)

2. The transition functionδ2 captures both∆ andun and is defined as follows: for(ℓ1, ℓ2, σI) ∈ L × L × ΣI and
σO ∈ ΣO we have

δ((ℓ1, ℓ2, σI), σO)(ℓ
′
1, ℓ

′
2) = ∆(ℓ1, σI , σO)(ℓ

′
1) · un(ℓ

′
1)(ℓ

′
2).

Intuitively, the first component of the gameH keeps track of the real state of the gameG, and the second com-
ponent keeps track of the information available from probabilistic uncertainty. Hence Player 1 is only allowed to
observe the second component which is the probability distribution over the observable state given the current
state.

3. The observation mapping is as follows: we haveO1 = L; andobs1(ℓ1, ℓ2) = obs1(ℓ1, ℓ2, σI) = ℓ2, i.e., only the
second component is observable. We will consider two cases for O2: for the reduction of all-powerful strategies
we will consider Player 2 has complete-observation, and in the other case we haveO2 = L and Player 2 observes
the first component that represents the correct history: i.e., obs2(ℓ1, ℓ2) = obs2(ℓ1, ℓ2, σI) = ℓ1.

4. For a parity objective inG given by priority functionpG : L → {0, 1, . . . , d}, we consider the priority function
pH in H as follows:pH((ℓ, ℓ′)) = pH((ℓ, ℓ′, σI)) = pG(ℓ), for all ℓ, ℓ′ ∈ L andσI ∈ ΣI .

Correspondence of strategies.We will now establish the correspondence of probabilistic uncertain strategies inG
and the observation based strategies inH . We present a few notations. For simplicity of presentation, we will use a
slight abuse of notation: given a history (or finite prefix)ρH = s0a0s1a1s2a2 . . . s2n in H we will represent the history
ass0a0a1s2a2a3s3 . . . s2n as the intermediate state is always uniquely defined by the state and the action. Intuitively
this is removing the stuttering and does not affect parity objectives.
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Mapping of strategies fromG to H . Given a historyρH = s0a0a1s2a2a3s3 . . . s2n in H , such thats2i = (ℓ12i, ℓ
2
2i),

we consider two histories inG as follows:

g1(ρH) = ℓ10a0a1ℓ
1
2a2a3 . . . ℓ

1
2n; g2(ρH) = ℓ20a0a1ℓ

2
2a2a3 . . . ℓ

2
2n.

Intuitively, g1 gives the first component (which is the correct history) andg2 gives the second component (which is the
observed history). We now define the mapping of strategies fromG to H : given strategyαG for Player 1, a strategy
βG for Player 2, and an all-powerful strategyβA

G for Player 2, in the gameG, we define the corresponding strategies
in H as follows: for a historyρH and an actionai for Player 1 we have

αH(ρH) = αG(g2(ρH));

βH(ρH ai) = βG(g1(ρH) ai);

βC
H(ρH ai) = βA

G(g1(ρH), g2(ρH), ai).

Note thatαH andβH are observation-based strategies, andβC
H is a strategy with complete-observation, i.e., all-

powerful strategies are mapped to complete-observation strategies. Hence for all-powerful strategies the reduction
is to one-sided games. We will usêg to denote the mapping of strategies, i.e.,αH = ĝ(αG), βH = ĝ(βG), and
βC
H = ĝ(βA

G).

Mapping of strategies fromH toG. We now present the mapping in the other direction. Letρ1G = ℓ10σ
i
0σ

o
0ℓ

1
1σ

i
1σ

o
1 . . . ℓ

1
n,

andρ2G = ℓ20σ
i
0σ

o
0ℓ

2
1σ

i
1σ

o
1 . . . ℓ

2
n be two prefixes inG. Intuitively, the first represent the correct history and the second

the observed history. Then we consider the following set of histories inH :

h1(ρ
1
G) = {ρH | g1(ρH) = ρ1G}; h2(ρ

2
G) = {ρH | g2(ρH) = ρ2G};

and
h12(ρ

1
G, ρ

2
G) = (ℓ10, ℓ

2
0)σ

i
0σ

o
0(ℓ

1
1, ℓ

2
1)σ

i
1σ

o
1 . . . (ℓ

1
n, ℓ

2
n).

We now define the mapping of strategies. Given an observation-based strategyαH ∈ AO
H for Player 1, observation-

based strategyβH ∈ BO
H for Player 2, and complete observation-based strategyβC

H ∈ BH , we define the following
strategies inG: for a correct historyρ1G, observed historyρ2G, and inputσi we have

βG(ρ
1
G σi) = βH(ρH σi); ρH ∈ h1(ρ

1
G);

αG(ρ
2
G) = αH(ρH); ρH ∈ h2(ρ

2
G);

βA
G(ρ

1
G, ρ

2
G, σ

i) = βC
H(h12(ρ

1
G, ρ

2
G), σi).

Note that sinceβH is observation-based it plays the same for allρH ∈ h1(ρ
1
G), and similarly, sinceαH is observation-

based it plays the same for allρH ∈ h2(ρ
2
G). Also observe that the strategyβA

G is an all-powerful strategy. We will use
ĥ to denote the mapping of strategies, i.e.,αG = ĥ(αH), βG = ĥ(βH), andβA

G = ĥ(βC
H).

Given a starting stateℓ0 ∈ G, consider the following probability distributionµ in H : µ(ℓ0, ℓ) = un(ℓ0)(ℓ). Given
the mapping of strategies, our goal is to establish the equivalences of the probability measure. We introduce some
notations required to establish the equivalence. Forj ≥ 0, we denote by(τ1j , τ

2
j ) the pair of random variables to

denote thej-th Player 1 state of the gameH , and byθij andθoj the random variables for the actions following the
j-th state. Our first lemma establishes a connection of the probability of observing the second component inH given
the first component along with functionObsSeq. We introduce notations to define two events: given two prefixes
ρ1G = ℓ10σ

i
0σ

o
0ℓ

1
1σ

i
1σ

o
1 . . . ℓ

1
n, andρ2G = ℓ20σ

i
0σ

o
0ℓ

2
1σ

i
1σ

o
1 . . . ℓ

2
n in G, let E1,2(ρ1G, ρ

2
G) denote the event that for all

0 ≤ j ≤ n we haveτ1j = ℓ1j , τ
2
j = ℓ2j and for all0 ≤ j ≤ n − 1 we haveθij = σi

j , θ
o
j = σo

j ; andE1(ρ1G) denote the
event that for all0 ≤ j ≤ n we haveτ1j = ℓ1j and for all0 ≤ j ≤ n− 1 we haveθij = σi

j , θ
o
j = σo

j .

Lemma 1. Letρ1G = ℓ10σ
i
0σ

o
0ℓ

1
1σ

i
1σ

o
1 . . . ℓ

1
n, andρ2G = ℓ20σ

i
0σ

o
0ℓ

2
1σ

i
1σ

o
1 . . . ℓ

2
n be two prefixes inG. Then for all strate-

giesαH andβH , the probability that the second component sequence inH is ρ2G, given the first component sequence
is ρ1G isObsSeq(ρ1G)(ρ

2
G), i.e., formally

PrαH ,βH

µ (E1,2(ρ
1
G, ρ

2
G) | E1(ρ

1
G)) = ObsSeq(ρ1G)(ρ

2
G).
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Proof. The proof is by induction on the length of the prefixes. The base case is as follows: let the length of prefixes
ρ1G andρ2G be 1, withρ1G = ℓ0 andρ2G = ℓ. Then we have

ObsSeq(ℓ0)(ℓ) = µ(ℓ0, ℓ);

as required. We now consider the inductive case: we considerprefixesρ1Gσ
i
nσ

o
nℓ

1
n+1 andρ2Gσ

i
nσ

o
nℓ

2
n+1. Let us consider

the eventsE1
n+1 = E1,2(ρ1Gσ

i
nσ

o
nℓ

1
n+1, ρ

2
Gσ

i
nσ

o
nℓ

2
n+1) andE2

n+1 = E1(ρ1Gσ
i
nσ

o
nℓ

1
n+1). Let E

1

n+1 denote the event that

τ1n = ℓ1n, τ2n = ℓ2n, τ1n+1 = ℓ1n+1, τ
2
n+1 = ℓ2n+1, θ

1
n = σi

n, andθ2n = σo
n; andE

2

n+1 denote the event thatτ1n = ℓ1n,
τ1n+1 = ℓ1n+1, θ

1
n = σi

n, andθ2n = σo
n. Then by definition we have

PrαH ,βH

µ (E
1

n+1 | E
2

n+1) =
δ((ℓ1n, ℓ

2
n, σ

i
n), σ

o
n)(ℓ

1
n+1, ℓ

2
n+1)∑

ℓ̃2
n
,ℓ̃2

n+1

δ((ℓ1n, ℓ̃
2
n, σ

i
n), σ

o
n)(ℓ

1
n+1, ℓ̃

2
n+1)

(In the numerator all choices are fixed, and

in denominator are all possible choices of the second component)

=
∆(ℓ1n, σ

i
n, σ

o
n)(ℓ

1
n+1) · un(ℓ

1
n+1)(ℓ

2
n+1)

∆(ℓ1n, σ
i
n, σ

o
n)(ℓ

1
n+1) ·

∑
ℓ̃2
n+1

un(ℓ1n+1)(ℓ̃
2
n+1)

= un(ℓ1n+1)(ℓ
2
n+1) (Since

∑
ℓ̃2
n+1

un(ℓ1n+1)(ℓ̃
2
n+1) = 1)

Note that the crucial fact used in the above proof is in the second equality and the fact is that for all̃ℓ2n we have
δ((ℓ1n, ℓ̃

2
n, σ

i
n), σ

o
n)(ℓ

1
n+1, ℓ̃

2
n+1) = ∆(ℓ1n, σ

i
n, σ

o
n)(ℓn+1) · un(ℓn+1)(ℓ̃

2
n+1) (i.e., it is independent of̃ℓ2n). Hence using

the above equality and inductive hypothesis we have:

PrαH ,βH

µ (E1
n+1 | E2

n+1) = PrαH ,βH

µ (E1,2(ρ
1
G, ρ

2
G) | E1(ρ

1
G)) · Pr

αH ,βH

µ (E
1

n+1 | E
2

n+1)

= ObsSeq(ρ1G)(ρ
2
G) · Pr

αH ,βH

µ (E
1

n+1 | E
2

n+1) (By inductive hypothesis)

= ObsSeq(ρ1G)(ρ
2
G) · un(ℓ

1
n+1)(ℓ

2
n+1) (By previous equality)

= ObsSeq(ρ1Gσ
i
nσ

o
nℓ

1
n+1)(ρ

2
Gσ

i
nσ

o
nℓ

2
n+1)

The desired result follows.

We will now establish the equivalences of the probabilitiesof the cones.

Lemma 2. For all finite prefixesρ1G in G, the following assertions hold:

1. For all strategiesαG, βG, βA
G (all-powerful), we have

PrαG,βG

ℓ0
(Cone(ρ1G)) = Prĝ(αG),ĝ(βG)

µ (Cone(h1(ρ
1
G))); Pr

αG,βA

G

ℓ0
(Cone(ρ1G)) = Prĝ(αG),ĝ(βA

G
)

µ (Cone(h1(ρ
1
G))).

2. For all strategiesαH , βH , βC
H (complete-observation), we have

Pr
ĥ(αH),ĥ(βH)
ℓ0

(Cone(ρ1G)) = PrαH ,βH

µ (Cone(h1(ρ
1
G))); Pr

ĥ(αH),ĥ(βC

H
)

ℓ0
(Cone(ρ1G)) = PrαH ,βC

H

µ (Cone(h1(ρ
1
G))).

Proof. We will present the result for the first item, and the proof forsecond item is identical. Let us denote by
αH = ĝ(αG) andβH = ĝ(βG). We will prove the result by induction on the length of the prefixes. The base case
is as follows: let the length of the prefixρ1G be 1, withρ1G = ℓ0. We observe thatPrαG,βG

ℓ0
(Cone(ℓ0)) = 1, and

PrαH ,βH

µ (Cone(h1(ℓ0))) = 1, and for all other cones of length1 the probability is zero. This completes the base case.

8



We now consider the inductive case: by inductive hypothesiswe assume thatPrαG,βG

ℓ0
(Cone(ρ1G)) =

PrαH ,βH

µ (Cone(h1(ρ
1
G))); and show that

PrαG,βG

ℓ0
(Cone(ρ1Ganbnℓn+1)) = PrαH ,βH

µ (Cone(h1(ρ
1
Ganbnℓn+1))).

Let ℓn be the last state ofρ1G. We first consider the left-hand side (LHS):

Pr αG,βG

ℓ0
(Cone(ρ1Ganbnℓn+1))

= PrαG,βG

ℓ0
(Cone(ρ1G)) ·

( ∑

ρ′∈ActMt(ρ1
G
)

ObsSeq(ρ1G)(ρ
′) · αG(ρ

′)(an) · βG(ρ
1
Gan)(bn) ·∆(ℓn, an, bn)(ℓn+1)

)

= PrαH ,βH

µ (Cone(h1(ρ
1
G))) ·

( ∑

ρ′∈ActMt(ρ1
G
)

ObsSeq(ρ1G)(ρ
′) · αG(ρ

′)(an) · βG(ρ
1
Gan)(bn) ·∆(ℓn, an, bn)(ℓn+1)

)

=
∑

ρ′∈ActMt(ρ1
G
)

PrαH ,βH

µ (Cone(h12(ρ
1
G, ρ

′))) · αG(ρ
′)(an) · βG(ρ

1
Gan)(bn) ·∆(ℓn, an, bn)(ℓn+1)

Above the first equality is by definition, the second equalityby inductive hypothesis, and the last equality is obtained
from Lemma 1 as follows: by Lemma 1 we haveObsSeq(ρ1G)(ρ

′) = PrαH ,βH

µ (E1,2(ρ1G, ρ
′) | E1(ρ1G)), and hence

PrαH ,βH

µ (Cone(h1(ρ
1
G)))·

∑

ρ′∈ActMt(ρ1
G
)

ObsSeq(ρ1G)(ρ
′)

=
∑

ρ′∈ActMt(ρ1
G
)

PrαH ,βH

µ (Cone(h1(ρ
1
G))) · Pr

αH ,βH

µ (E1,2(ρ
1
G, ρ

′) | E1(ρ
1
G))

=
∑

ρ′∈ActMt(ρ1
G
)

PrαH ,βH

µ (Cone(h12(ρ
1
G, ρ

′))).

We now consider the right-hand side (RHS)PrαH ,βH

µ (Cone(h1(ρ
1
Ganbnℓn+1))) and the RHS can be expanded as:

(below for brevity we writêρ = h12(ρ
1
G, ρ

′))
∑

ρ′∈ActMt(ρ1
G
)

∑

ℓ′
n+1

PrαH ,βH

µ (Cone(ρ̂)) · αH(ρ̂)(an) · βH(ρ̂an)(bn) · δ((ℓn, ℓ
′
n, an), bn)(ℓn+1, ℓ

′
n+1)

Since we have

αH(h12(ρ
1
G, ρ

′))(an) = αG(ρ
′)(an); and βH(h12(ρ

1
G, ρ

′)an)(bn) = βG(ρ
1
Gan)(bn),

the above expression for RHS is equivalently described as:
∑

ρ′∈ActMt(ρ1
G
)

∑

ℓ′
n+1

PrαH ,βH

µ (Cone(h12(ρ
1
G, ρ

′))) · αG(ρ
′)(an) · βG(ρ

1
Gan)(bn) ·∆(ℓn, an, bn)(ℓn+1) · un(ℓn+1)(ℓ

′
n+1)

Since
∑

ℓ′
n+1

un(ℓn+1)(ℓ
′
n+1) = 1, it follows that LHS is equal to the RHS. The result for correspondence for all-

powerful strategyβA
G is essentially copy-paste of the above proof replacing appropriatelyβG by βA

G . This completes
the proof and the desired result follows.

It follows that there is a sure, almost-sure, positive winning strategy inG for Parity(pG) iff there is a corresponding
one inH for Parity(pH) and hence from Theorem 1 we obtain the following result.

Theorem 2. The following assertions hold:

1. (All-powerful Player 2).The sure, almost-sure and positive winning for safety objectives; the sure and almost-sure
winning for reachability objectives and Büchi objectives; the sure and positive winning for coBüchi objectives;
and the sure winning for parity objectives can be solved in EXPTIME for games with probabilistic uncertainty
with all-powerful strategies for Player 2. The positive winning for reachability objectives can be solved in PTIME.
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2. (Not all-powerful Player 2).The sure, almost-sure winning for safety objectives; and the sure winning for parity
objectives can be solved in EXPTIME; the almost-sure winning for reachability objectives and B̈uchi objectives;
the positive winning for safety and coBüchi objectives can be solved in 2EXPTIME for games with probabilistic
uncertainty without all-powerful strategies for Player 2.The positive winning for reachability objectives can be
solved in EXPTIME.

5 Reduction: POMDPs to Games with Probabilistic Uncertainty

In this section we present a reduction in the reverse direction and show that POMDPs with parity objectives can be
reduced to games with probabilistic uncertainty and parityobjectives. We first present the reduction and then show
the correctness of the reduction by mapping prefixes, strategies, and establishing the equivalence of the probability
measure.

Reduction: POMDPs to games with probabilistic uncertainty. Let H = (S,A, δ,O) be a POMDP with a parity
objectiveφ, we construct the game of probabilistic uncertaintyG = (L,ΣI , ΣO, ∆, un) as follows:

– L = S;
– ΣI = A;
– ΣO = {⊥};
– Forℓ ∈ L anda ∈ ΣI let∆(ℓ, a,⊥)(ℓ′) = δ(ℓ, a)(ℓ′), i.e., the transition function is same as the transition function

of the POMDP. In other words, the state space is the same, the action choices of the POMDP corresponds to the
input action choice, and the output action set is singleton,and the transition function mimics the transition function
of the POMDP. Below we use the probabilistic uncertainty to capture the partial-observation of the POMDP.

– The uncertainty function is as follows:un(ℓ)(ℓ′) =

{
0 if obs(ℓ) 6= obs(ℓ′)

1
|obs(ℓ)| if obs(ℓ) = obs(ℓ′)

The parity objective is the same as the original parity objective.

Mapping of prefixes.Given a prefix (or a finite history)ρH = s0a0s1a1s2 . . . sn in H we construct a prefix inG as
ρG = s0a0⊥s1a1⊥s2 . . . sn by simply inserting the⊥ actions. This construction defines a bijectionh : PrefsH →
PrefsG between prefixes. We can naturally extend the mapping to setsof prefixes. LetΨ ⊆ PrefsH , thenh′(Ψ) =
{h(ρ) | ρ ∈ Ψ}.

Lemma 3. For prefixesρ, ρ′ in G the following assertion holds:

ObsSeq(ρ)(ρ′) =





1∏n
i=1 |oi|

If obs(h−1(ρ)) = obs(h−1(ρ′)) = o1a1o2 . . . an−1on

0 Otherwise

Proof. We prove the result by induction on the length of prefixes. We will only considerρ andρ′ that have the same
length, as otherwise by definition the observation sequenceprobability is 0. We first consider the base case.

Base case.Let ℓ0 be the initial state. Thenρ = ℓ0 and letρ′ = ℓ for someℓ ∈ L. Then:

ObsSeq(ℓ0, ℓ) = un(ℓ0, ℓ) =
1

|obs(ℓ0)|

if ℓ0 andℓ have the same observation and0 otherwise. This proves the base case.

Inductive step.We now consider prefixes of lengthn+ 1, and by inductive hypothesis the result holds for prefixes of
lengthn. Then

ObsSeq(ρan⊥ℓn+1)(ρ
′an⊥ℓ′n+1) = ObsSeq(ρ)(ρ′) · un(ℓn+1)(ℓ

′
n+1).

We now consider two cases to complete the proof.

– If obs(h−1(ρan⊥ℓn+1)) 6= obs(h−1(ρ′an⊥ℓ′n+1)), then eitherobs(h−1(ρ)) 6= obs(h−1(ρ′)) or obs(ℓn+1) 6=
obs(ℓ′n+1). It follows that one of the factors (ObsSeq(ρ)(ρ′) or un(ℓn+1)(ℓ

′
n+1)) is equal to0 and hence:

ObsSeq(ρan⊥ℓn+1)(ρ
′an⊥ℓ′n+1) = 0
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– Otherwise, we haveobs(h−1(ρan⊥ℓn+1)) = obs(h−1(ρ′an⊥ℓ′n+1)) = o1a1o2 . . . an−1onanon+1. Then:

ObsSeq(ρan⊥ℓn+1)(ρ
′an⊥ℓ′n+1) = ObsSeq(ρ)(ρ′) · un(ℓn+1)(ℓ

′
n+1) =

1∏n
i=1 |oi|

·
1

|on+1|
=

1
∏n+1

i=1 |oi|

The desired result follows.

Mapping of strategies.We first present the mapping of strategies fromH to G and then fromG to H . Note that in
the gameG, there is no choice for Player 2, and hence we remove the Player 2 strategies in the descriptions below.

Mapping strategies fromH to G. Let αH be an observation-based Player-1 strategy inH and ρG =
s0a0⊥s1a1⊥s2 . . . sn be a prefix inG. We define a Player-1 strategyαG in G as follows:αG(ρG) = αH(h−1(ρG)).

Mapping strategies fromG toH . LetαG be a Player-1 strategy inG andρH = s0a0s1a1s2 . . . sn be a prefix inH with
o = o0a0o1a1o2 . . . on as its observation sequence. Note that as Player 2 has only one strategy (always playing⊥)
we omit it from discussion. Note that everyρ ∈ ActMt(h(ρH)) can have different actions with different probabilities
enabled. We define a Player-1 strategyαH in H as follows: for an actiona ∈ A we have

αH(ρH)(a) =
∑

ρ′∈ActMt(h(ρH))

ObsSeq(h(ρH))(ρ′) · αG(ρ
′)(a).

We now show that the strategyαH is an observation-based strategy for Player 1 in the POMDP.

Lemma 4. The strategyαH obtained from strategyαG is an observation-based strategy for Player 1 inH .

Proof. Let ρH andρ′H be two prefixes inH that match in observation sequence and we need to argue thatαH plays
the same for both prefixesρH andρ′H . Observe that sinceρH andρ′H has the same observation sequence, we have
ActMt(h(ρH)) = ActMt(h(ρ′H)). Moreover it follows from Lemma 3 thatObsSeq(h(ρH)) only depends on the
observation sequence ofρH and hence for allρ′ ∈ ActMt(h(ρH)) = ActMt(h(ρ′H)) we haveObsSeq(h(ρH))(ρ′) =
ObsSeq(h(ρ′H))(ρ′). It follows that for all actionsa ∈ A we haveαH(ρH)(a) = αH(ρ′H)(a). It follows thatαH is
observation based.

Correspondence of probabilities.In the following two lemmas we establish the correspondenceof the probabilities
for the mappings.

Lemma 5. Let us consider the mapping of strategies fromH toG. For all prefixesρH in H we have

PrαH

µ (Cone(ρH)) = PrαG

ℓ0
(Cone(h(ρH))).

Proof. The proof is based on induction on the length of the prefixρH . We denote the last state ofρH by ℓn.

Base case.For prefixes of length 1 whereρH = ℓ0 we getPrαH

µ (Cone(ℓ0)) = 1 andPrαG

l0
(Cone(h(ℓ0))) = 1. For all

other prefixes both sides are equal to0. Hence the base case follows.

Inductive step.By inductive hypothesis we assume the result for prefixesρH of length n (i.e., we assume that
PrαH

µ (Cone(ρH)) = PrαG

ℓ0
(Cone(h(ρH)))) and will show that

PrαH

µ (Cone(ρHanℓn+1)) = PrαG

ℓ0
(Cone(h(ρHanℓn+1))).

First we expand the left hand side (LHS) and by definition we get that:

PrαH

µ (Cone(ρHanℓn+1)) = PrαH

µ (Cone(ρH)) · αH(ρH)(an) · δ(ℓn, an)(ℓn+1).

We now expand the right hand side (RHS) and get that:

PrαG

ℓ0
(Cone(h(ρHanℓn+1))) =

PrαG

ℓ0
(Cone(h(ρH))) ·


 ∑

ρ′∈ActMt(h(ρH ))

ObsSeq(h(ρH))(ρ′) · αG(ρ
′)(an) ·∆(ℓn, an,⊥)(ℓn+1)



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Using the inductive hypothesis, the definition of the game, and the mapping of strategies we get on the RHS:

PrαG

ℓ0
(Cone(h(ρHanℓn+1))) =

PrαH

µ (Cone(ρH)) ·


 ∑

ρ′∈ActMt(h(ρH))

ObsSeq(h(ρH))(ρ′) · αH(h−1(ρ′))(an) · δ(ℓn, an)(ℓn+1)




For allρ′ that do not match the observation sequence ofh(ρH), we haveObsSeq(h(ρH))(ρ′) = 0 (by Lemma 3), and
asαH is observation based for allρ′ ∈ ActMt(ρH) that matches the observation sequence ofh(ρH), the strategyαH

plays the same. Let us denote byρ′ ≈ h(ρH) thatρ′ matches the observation sequence ofh(ρH). Then we have

∑

ρ′∈ActMt(h(ρH))

ObsSeq(h(ρH))(ρ′)· αH(h−1(ρ′))(an)

=
∑

ρ′∈ActMt(h(ρH )),ρ′≈h(ρH )

ObsSeq(h(ρH))(ρ′) · αH(h−1(ρ′))(an)

=
∑

ρ′∈ActMt(h(ρH )),ρ′≈h(ρH )

ObsSeq(h(ρH))(ρ′) · αH(ρH)(an)

= αH(ρH)(an);

where the first equality follows as for all sequencesρ′ that do not match the observation sequence ofh(ρH) we
haveObsSeq(h(ρH))(ρ′) = 0; the second equality follows as for allρ′ ≈ h(ρH) we haveαH(h−1(ρ′))(an) =
αH(ρH)(an) (asαH is observation based); and the last equality follows because asObsSeq is a probability distribution
we have

∑
ρ′∈ActMt(h(ρH)),ρ′≈h(ρH) ObsSeq(h(ρH))(ρ′) = 1. Hence we have

PrαG

ℓ0
(Cone(h(ρHanℓn+1))) = PrαH

µ (Cone(ρH)) · αH(ρH)(an) · δ(ℓn, an)(ℓn+1)

Thus we have that LHS and RHS coincide and this completes the proof.

Lemma 6. Let us consider the mapping of strategies fromG toH . For all prefixesρG in G we have

PrαH

µ (Cone(h−1(ρG))) = PrαG

ℓ0
(Cone(ρG))

Proof. The inductive proof is as follows and we will denote the last state ofρG asℓn. The base case is similar to the
base case of Lemma 5. We now present the inductive case.

Inductive step.By inductive hypothesis we assume the result for prefixesρG of length n (i.e., we assume that
PrαH

µ (Cone(h−1(ρG))) = PrαG

ℓ0
(Cone(ρG))) and will show that

PrαH

µ (Cone(h−1(ρGanℓn+1))) = PrαG

ℓ0
(Cone(ρGanℓn+1)).

First we expand the right hand side (RHS) and by definition we get that:

PrαG

ℓ0
(Cone(ρGanℓn+1)) = PrαG

ℓ0
(Cone(ρG)) ·


 ∑

ρ′∈ActMt(ρG)

ObsSeq(ρG)(ρ
′) · αG(ρ

′)(an) ·∆(ℓn, an,⊥)(ℓn+1)




As∆(ℓn, an,⊥)(ℓn+1) does not depend onρ′ we get:

PrαG

ℓ0
(Cone(ρGanℓn+1)) = PrαG

ℓ0
(Cone(ρG)) ·∆(ℓn, an,⊥)(ℓn+1) ·


 ∑

ρ′∈ActMt(ρG)

ObsSeq(ρG)(ρ
′) · αG(ρ

′)(an)



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We will now show that the expansion of the left hand side (LHS)also gives the same expression. LetρH = h−1(ρG).
By expanding the LHS we get:

PrαH

µ (Cone(h−1(ρGanℓn+1))) = PrαH

µ (Cone(h−1(ρG))) · αH(h−1(ρG))(an) · δ(ℓn, an)(ℓn+1)

= PrαH

µ (Cone(ρH)) · αH(ρH)(an) · δ(ℓn, an)(ℓn+1)

= PrαH

µ (Cone(ρH)) · αH(ρH)(an) ·∆(ℓn, an,⊥)(ℓn+1)

= PrαG

ℓ0
(Cone(ρG)) · αH(ρH)(an) ·∆(ℓn, an,⊥)(ℓn+1);

where the first equality is by definition; the second equalityis by simply re-writingh−1(ρG) asρH ; the third equality
is by the definition of∆ and δ; and the final equality is the inductive hypothesis. By definition of αH we have

αH(ρH)(an) =
(∑

ρ′∈ActMt(ρG) ObsSeq(ρG)(ρ
′) · αG(ρ

′)(an)
)

; and hence it follows that LHS and RHS coincide.

Thus the desired result follows.

The previous two lemmas establish the equivalence of the probability measure and completes the reduction of
POMDPs to games with probabilistic uncertainty. Hence the lower bounds for POMDPs also gives us the lower bound
for games with probabilistic uncertainty. Hence Theorem 2,along with the reduction from POMDPs and Theorem 1
gives us the following result for games with probabilistic uncertainty (the results are also summarized in Table 1).

Theorem 3. The following assertions hold:

1. (All-powerful Player 2).The sure, almost-sure and positive winning for safety objectives; the sure and almost-sure
winning for reachability objectives and Büchi objectives; the sure and positive winning for coBüchi objectives;
and the sure winning for parity objectives are all EXPTIME-complete for games with probabilistic uncertainty
with all-powerful strategies for Player 2. The positive winning for reachability objectives is PTIME-complete.

2. (Not all-powerful Player 2).The sure, almost-sure winning for safety objectives; and the sure winning for parity
objectives are all EXPTIME-complete; the almost-sure winning for reachability objectives and B̈uchi objectives;
the positive winning for safety and coBüchi objectives can be solved in 2EXPTIME and is EXPTIME-hard for
games with probabilistic uncertainty without all-powerful strategies for Player 2. The positive winning for reach-
ability objectives can be solved in EXPTIME.

3. (Undecidability results).The positive winning problem for Büchi objectives, the almost-sure winning problem for
coBüchi objectives, and the positive and almost-sure winning problem for parity objectives are undecidable for
games with probabilistic uncertainty.

Sure Almost Positive

All-powerful Not-all-powerful All-powerful Not-all-powerful All-powerful Not-all-powerful

Safety EXP-complete EXP-complete EXP-complete EXP-complete EXP-complete 2EXP, EXP

Reachability EXP-complete EXP-complete EXP-complete 2EXP, EXP PTIME-complete EXP, PTIME

Büchi EXP-complete EXP-complete EXP-complete 2EXP, EXP Undec. Undec.

coBüchi EXP-complete EXP-complete Undec. Undec. EXP-complete 2EXP, EXP

Parity EXP-complete EXP-complete Undec. Undec. Undec. Undec.

Table 1. Complexity of games with probabilistic uncertainty with parity objectives, where for each entry we present
the upper and lower bound, or undecidability.

6 Conclusion

In this work we considered games with probabilistic uncertainty, which is natural for many problems, and has not
been considered before. We present a reduction of such gamesto classical partial-observation games and a reduction
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of POMDPs to games with probabilistic uncertainty. As a consequence we establish the precise decidability frontier
for games with probabilistic uncertainty. Table 1 summarizes our results. For most problems we establish EXPTIME-
complete bounds. For some decidable problems we establish 2EXPTIME upper bounds, and EXPTIME lower bounds,
and establishing the precise complexity results are interesting open problems.
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287–301. Springer, 2008.

2. N. Bertrand, B. Genest, and H. Gimbert. Qualitative determinacy and decidability of stochastic games with signals. In LICS,
pages 319–328. IEEE Computer Society, 2009.

3. D. Berwanger and L. Doyen. On the power of imperfect information. In FSTTCS, Dagstuhl Seminar Proceedings 08004.
Internationales Begegnungs- und Forschungszentrum fuer Informatik (IBFI), 2008.

4. P. Billingsley.Probability and Measure. Wiley-Interscience, 1995.
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