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Abstract. We introduce games with probabilistic uncertainty, a retanodel for controller synthesis in which
the controller observes the state of the system througheiog® sensors that provide correct information about
the current state with a fixed probability. That is, in eadpsthe sensors return an observed state, and given the
observed state, there is a probability distribution (du¢hto estimation error) over the actual current state. The
controller must base its decision on the observed stateefréttan the actual current state, which it does not know).
On the other hand, we assume that the environment can perédxterve the current state. We show that our
model can be reduced in polynomial time to standard pastigkervation stochastic games, and vice-versa. As a
consequence we establish the precise decidability frofatiehe new class of games, and for most of the decidable
problems establish optimal complexity results.

1 Introduction

In a control system, a controller interacts with its envirant through sensors and actuators. The controller observe
the state of the environment through a set of sensors, campudontrol signal that depends on the history of observed
sensor readings, and feeds the control signal to the emagahthrough actuators. The state of the environment is
then updated as a function of the control signal as well astrdiance signal that models external inputs to the
environment. In aeactivesetting, the sense-compute-actuate cycle repeats foregeiting in an infinite trace of
environment states. The objective of the controller is tuea that the trace belongs to a given specification of “good”
traces. The controller synthesis problem asks, given thamiycal law that specifies how the environment state changes
according to the controller inputs and external disturleanand a specification of good traces, to synthesize a ¢ontro
law that ensures that the environment traces are good, rtemhatv external disturbances behave.

Controller synthesis has been studied extensively forgatéstic games withu-regular specifications |5,14,13].

In this setting, the problem is modeled as a game on a graghv@itices of the graph represent system states, and
are divided into “controller states” and “disturbance essdtAt a controller state, the controller chooses an ouigoi
edge and moves to a neighboring vertex along this edge. Adtardance state, the disturbance chooses an outgoing
edge and moves along this edge. This continues ad infinitefinidg a sequence of states. If this sequence satisfies
the specification, the controller wins; otherwise, theutisance wins. The games are calpeifect observatiarsince

both players have exact knowledge of the current state ankighory of the game.

The study of perfect-observation deterministic games haen extended to systems wijihrtial observationin
which the controller can only observe part of the environtsestate [1%,7], and tstochastic dynamidd2[8/10,11],
in which the state updates happen according to a probabl&st.

The “standard model” of partial-observation stochastimga[7.3,2] is described as an extension to the above
graph model, by fixing an equivalence relation on the vestithe “observation function”), and stipulating that the
controller only sees the equivalence class of the curratéxenot the particular vertex the state is in. In additide,
transitions of the graph are stochastic: the controllerthedlisturbance each choose some move, and the next vertex
is chosen according to a probability distribution basedhencurrent vertex and the chosen move.

In this paper, we introduce a different, albeit natural, edaaf probabilistic uncertainty in controller synthesis.
Consider a state given bybits. The sensors used to measure the state are typicalperfett, and observing the state
through the sensor results in some bits being flipped withesknown probability (probabilistic noise). In applica-
tions where the controller observes the state bits througgtwork, then the probabilistic noise in the communication
channels results in bits being flipped with some known prditakaccording to the classical Shannon’s communica-
tion channel model). Thus, the controller obserudsits through the sensor, and this estimate defines a prayabil
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distribution over the state space for the current stateohtrast, we allow the disturbance to precisely observe the
state, corresponding to a worst case assumption on thelshsice. The objective of the controller is to find a strategy
that ensures that the system satisfies the specification thidg@robabilistic uncertainty on the current state. We di
tinguish between two models of the disturbance. In the fistleh the disturbance observes the correct sequence of
states as well as both the observation of the controllerfamdéquence of controller moves. In the second model, the
disturbance observes the correct sequence of states aswied sequence of controller moves (but not the observation
of the controller). It turns out that the two models give figsesubtle differences in defining the probability measures
on the games, as well as different complexities in the smhuigorithms.

Our model (which we refer to as games with probabilistic utaiety) is inspired by analogous models of state
estimation under probabilistic noise in continuous cdrgystems. We believe this model of games with probabilistic
uncertainty naturally captures the behavior of many sehased control systems. Intuitively, the standard model
of partial-observation games represent “partial but atriformation” where the controller can observe correctly
only the firstk < n bits of the state (i.e., the observation is partial as therotler observes only a part of the
state bits, but the information about the observed stageidiilways correct). In contrast, our model of games with
probabilistic uncertainty represent “complete but uraiarinformation” where the controller can observe all thaits
of the state but with uncertainty of observation (i.e., tbetooller can observe all the bits, but each bit is correttwi
some probability). Since the type of uncertain informaiimour model is very different from the standard models of
partial-observation games studied in the literature, ¢hegtionship between them is not immediate.

Our main contribution, along with the introduction of theural model of games with probabilistic uncertainty, is
establishing the equivalence of the new class of games atidlpzbservation games. Our main technical result is a
polynomial-time reduction from this new model of games vpithbabilistic uncertainty to standard partial-obsevati
games, and a converse reduction from partially-observsllalkov decision processes (POMDPSs) to games with
probabilistic uncertainty. The results to establish thaieajence of the two classes of games which represent two
different notions of information (partial but correct vaneplete but uncertain) are quite intricate. For exampletter
new class of games the inductive definition of probabilityasigre is subtle and different from the classical definition
of probability measure for probabilistic systemns|[17,9isTis because the controller observes a history that can be
completely different from the actual history, whereas theimnment (or disturbance) observes the actual history.
We first inductively define a probability measure of observistbory, given the actual history, and use it to define the
probability measure inductively. We show how our polyndroanstructions for reduction capture the subtleties in the
probability measure, and by establishing precise mapgistyategies (which is at the heart of the proof of correcdnes
of the reduction) we obtain the desired equivalence result.

In the positive direction, our reduction allows us to sohomtroller synthesis problems for games with proba-
bilistic uncertainty against-regular specifications, using algorithmsof [7,2]. In thegative direction, we get lower
bounds on the hardness of problems by using known lower iand®OMDPs using the hardness results 6f|[1,6].
In particular, with our reductions we establish precisély tdecidability frontier of games with probabilistic uncer
tainty for various classes of parity objectives (a candrimam to expressv-regular specifications); and for most of
the decidable problems we establish EXPTIME-complete Oepand in some cases 2EXPTIME upper bounds and
EXPTIME lower bounds (see Tallé 1). Moreover, our reducéibows the rich body of algorithms (such as symbolic
and anti-chain based algorithm€ [[7,2]) for partial-obaéon games, along with any future algorithmic developraent
for partial-observation games, to be applicable to solvaagwith probabilistic uncertainty. In summary, our result
provide precise decidability frontier, optimal complgx{in most cases), and algorithmic solutions for games with
probabilistic uncertainty, that is a natural model for cohproblems with state estimation under probabilisticseoi

2 Games with Probabilistic Uncertainty

In this section we introduce a class of games with probaigilimperfect information, and call them games with
probabilistic uncertainty.

Probability distribution A probability distributionon a finite setd is a functiorns : A — [0, 1] suchthad  _ , x(a) =

1. We denote byD(A) the set of probability distributions a#.

Game structures with probabilistic uncertain.game structure with probabilistic uncertainty consistaduple

G = (L, X5, Y0,A,un), where (a)L is a set oflocations (b) X'y and X, are two sets of input and output alphabets,



respectively; (C)A : L x X1 x Xo — D(L) is a probabilistic transition function that given a locati@an input and
an output letter gives the probability distribution ovee thext locations; and (djn : L — D(L) is theprobabilistic
uncertainty functiorthat given the true current location describes the proltgbilstribution of the observed location.
If un is the identity function we obtain perfect-observation gam

Intuitively, a game proceeds as follows. The game starteraedocatiory € L. Player 1 observes a state drawn
from the distributionun(¢), which represents a potentially faulty observation precésuitively, at every step the
player can observe the value of all variables that corredptmthe state of the game, but there is a probability that
the observed value of some variables is incorrect. Play&sgroes the “correct” state Given the observation of the
history of the game so far, Player 1 picks an input alphabet ¥;. Player 2 then picks an output letie? € X,:
we consider two variants, (1) Player 2 only observes thehjistf correct locations and the moves of the players;
and (2) Player 2 observes the history of correct locatidressntoves of the players, and also observes the history of
observed locations of Player 1. The state of the game is egdat’ with probability A(¢, 0%, 5°)(¢'). This process is
repeated ad infinitum.

Plays.A play of G is a sequenceg = {yoiogl10i09 . .. of locations, input letter, and output letter, such thatér
Jj = 0we haveA((;, 0%, 09)(¢11) > 0. Theprefix up to/,, of the playp is denoted by(n), itslengthis |p(n)| = n+1
and itslast elements Last(p(n)) = ¢,,. The set of plays ir§ is denoted byPlays(G), and the set of corresponding

finite prefixes is denotelrefs(G).

StrategiesA strategy for Player 1 observes the finite prefix of a play &ed selects an input letter (pure strategies) or a
probability distribution over input letters iby;. Formally, a pure strategy for Player 1 is a functionPrefs(G) — X;,

and a randomized strategy for Player 1 is a functiarPrefs(G) — D(X;). Similarly, pure and randomized strategies
for Player 2 are defined as functiofis Prefs(G) x X; — X, andg : Prefs(G) x X; — D(X,), respectively. Note
that Player 2 sees Player 1's choice of input action at eagh Bt the case where Player 2 observes also the history of
observed locations, the pure and randomized strategieteéireed as functiong : Prefs(G) x Prefs(G) x X; — X,
andg : Prefs(G) x Prefs(G) x X; — D(X,), respectively, where the output letter is chosen based @woriginal
history and observed history. We refer to strategies thegokes both histories as “all-powerful” strategies foryete.

OutcomesThe outcomeof two randomized strategies for Player 1 and3 for Player 2 from a locatiod € L is
the set of playp = (yaj0§ ... such that (1Y = /o, (2) there exists a sequen€g . .. such thatun(é;)(¢;) > 0

for eachj > 0, (3) for eachj > 0, we havea((yohog ... £5)(05) > 0 andB(p(j),0%)(a9) > 0 (if 5 is an all-
powerful strategy, thew(p(j), (yo06¢) ... L5, 05)(09) > 0), and A(¢;, 0%, 09)(£;41) > 0. The primed sequence
2] . .. gives the sequence of observations made by Player 1 usingdbabilistic uncertainty function. Note that
this sequence may be incorrect with some probability duedbabilistic uncertainty in the observation. We denote
this set of plays a®utcome(G, ¢, «, 3). The outcome of two pure strategies is defined analogoushgidering pure
strategies as degenerate randomized strategies whicla patier with probability one. Theutcome sebf the pure
(resp. randomized) strategyfor Playerl in G is the setOutcome; (G, ¢, «) of playsp such that there exists a pure
(resp. randomized) strategy/for Player2 with p € Outcome(G, ¢, v, 8). The outcome seDutcomes (G, ¢, 3) for

Player 2 is defined symmetrically.

Probability measureGiven strategiesy and 3, we define the probability measufez;ﬁ(-). The definition of the
probability measure is subtle and non-standard as the grefiXPlayer 1 observes can be completely different from
the original history. For a finite prefix € Prefs(G), let Cone(p) denote the set of plays withas prefix. We will define
Prj‘(;ﬁ(-) for cones, and then by Caratheodory extension thedremg4gtis a unique extension to all measurable sets
of paths. To define the probability measure we also need toalaffunctionObsSeq(p), that given a finite prefiy,
gives the probability distribution over finite prefixg’s such thaDbsSeq(p)(p’) denotes the probability of observing
o’ given the correct prefix is. The base case is as follows:

Pr{7(Cone(fp)) = 1;  ObsSeq(£o) (') = un(fo)(£').
The inductive definition 0ObsSeq is as follows: for a prefiy of lengthn + 1
ObsSeq(pa, 0l 1) (P 7000, 1) = ObsSeq(p) (p') - un(£n41)(£) 1)
Given a sequence = (yoiogli0ic? .. . L,, we defineActMt(p) = {p = (y5i550,5:69 ..., | V1 < j < n—

1. E} = a;i ands? = 0?7} the sequences of same lengtipagich that the sequence of input and output letter matches
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(i.e., the set of action-matching prefixes). Note that far action-matching prefixes the observation sequence famcti
always assigns probability zero. The inductive case foptiedability measure is as follows: for a prefpof length
n + 1 with last state,,, we have

Pry? (Cone(po, 09 41)) =

P17, (Cone(p)) - Y ObsSea(p)(p) - al(p')(e},) - B(poy,)(07) - Abn, o, 02)(€n+1));

p' €ActMt(p)

i.e., ObsSeq(p)(p’) gives the probability to obserye, thena(p’)(c?) denotes the probability to play: given the
strategy and observed sequeptend since Player 2 observes the correct sequence the fitytialplay ¢¢ is given
by B(poi)(c2) (Player 2 observes), and the final termA(4,,, of,, 02)(¢,+1) gives the transition probability. If is
an all-powerful strategy, thefi observes both the correct histgrand the observed histopy, and then the definition
is as follows:

Pry? (Cone(po, 09 41)) =

iy (Cone(p))- (> ObsSea(p)(p') - alp)(h) - Blp, ol k) (%) - Alln, o, azxenm).

p' €ActMt(p)

Winning objectivesAn objectivefor Playerl in G is a setp C Plays(G) of plays. A playp € Plays(G) satisfieshe
objectiveg, denotedh = ¢, if p € ¢. We considew-regular objectives specified as parity objectives (a caxabform
to express allo-regular objectives [16]). For a play= ¢yoi0( . .., we denote by, the k-th location/,, of the play
and denote binf(p) the set of locations that occur infinitely oftendnthat is Inf(p) = {¢ | Vi3j : j > i and{; = ¢}.
We consider the following classes of objectives.

1. Reachability and safety objectiveSiven a setT C L of target locations, theeachability objectiveReach(T)
requires that a location iffi” be visited at least once, that Reach(7) = {p | 3k > 0 p, € T}. Dually, the
safetyobjectiveSafe(7") requires that only states i be visited. FormallySafe(7) = {p | Vk > 0 pr, € T }.

2. Buchi and coBichi objectivesLet 7 C L be a set of target locations. TBéchiobjectiveBuchi(7) requires that
a state in7 be visited infinitely often, that iBuchi(7) = {p | Inf(p) N T # 0}. Dually, thecoBuchiobjective
coBuchi(7T) requires that only states i be visited infinitely often. Formally,oBuchi(7) = {p | Inf(p) C T }.

3. Parity objectivesFord € N, letp : L — {0,1,...,d} be apriority function which maps each state to a nonneg-
ative integer priority. Thearity objectiveParity(p) requires that the minimum priority that occurs infinitelyef
be even. FormallyRarity(p) = {p | min{p(¢) | £ € Inf(p)} is ever}. The Biichi and coBiichi objectives are the
special cases of parity objectives with two prioritips,L. — {0,1} andp : L — {1, 2}, respectively.

Sure, almost-sure and positive winnign eventis a measurable set of plays, and given strategiasd 5 for the
two players, the probabilities of events are uniquely defifi®@r an objectivey, assumed to be Borel, we denote by
Prt‘?"ﬁ (¢) the probability that is satisfied by the play obtained from the starting locatiamen the strategiesand;
are used. Given a gandk an objectivep, and a locatior, we consider the following winning modes: (1) a strategy
for Player 1 issure winningor the objectivey from ¢ € L if Outcome(G, ¢, «, 8) C ¢ for all strategies for Player2;

(2) a strategyy for Playerl is almost-sure winnindor the objectivep from ¢ € L if Pr?’ﬁ(gb) = 1 for all strategies’

for Player2; and (3) a strategy for Player1 is positive winningor the objectivep from ¢ € L if Pr?'ﬂ(gb) > ( for
all strategies’ for Player2.

Qualitative analysis of a game consists of the computatfaihe sure, almost-sure and positive winning sets.
The sure (resp. almost-sure and positive) winning decigioblem for an objective consists of a game and a starting
location?, and asks whether there is a sure (resp. almost-sure aritv@painning strategy frond.

3 Partial-observation Stochastic Games

We now recall the usual definition of partial-observatiomga and their subclasses. We focus on partial-observation
turn-based probabilistic games, where at each round omeqfiayers is in charge of choosing the next action and the



transition function is probabilistic. We will present a pobmial time reduction of games with probabilistic uncitya
to these games.

Partial-observation games.A partial-observation stochastic ganféor short partial-observation game or simply a
gamg is a tupleG = (S; U Sa, A1, A3, 61 U b2, O1, O3) with the following components:

1. (State space)S = S; U S; is a finite set of states, whefg NS> = 0 (i.e., S; and.Sy are disjoint), states s,
are Player 1 states, and statesinare Player 2 states.

2. (Actions).A; (i = 1, 2) is afinite set of actions for Playér

3. (Transition function)Fori € {1, 2}, the probabilistic transition function for Playéis the functiory; : S; x A; —
D(Ss—;) that maps a statg € .S; and an actiom; € A; to the probability distributiod; (s;, a;) over the successor
states inS3_; (i.e., games are alternating).

4. (Observations)?, C 2° is a finite set of observations for Playkethat partitions the state spaSeand similarly
O, is the observations for Player 2. These partitions unigdefine functionsbs; : S — O;, fori € {1, 2}, that
map each state to its observation such that obs;(s) for all s € S. We will also consider the special case of
one-sided games, where Player 2 is perfectly informed (biasptete observation), i.e0» = .S, andobss (s) = s
forall s € S (i.e., the partition consists of singleton states).

Special Class: POMDPsWe will consider one special class of partial-observatiamgs callegartial-observable
Markov decision process€BOMDPSs), where the action set for Player 2 is a singletan, there is effectively only
Player 1 and stochastic transitions). Hence we will omitabton set and observation for Player 2 and represent a
POMDP as the following tupl& = (S, A, §, O), whered : S x A — D(S5).

Plays.In a game, in each turn, fare {1, 2}, if the current state is in .S;, then Playeli chooses an actiom € A;,
and the successor state is chosen by sampling the probalisiitibutiond; (s, a). A playin G is an infinite sequence
of states and actions = spagsia: ... such that for allj > 0, if s; € S;, fori € {1,2}, thena; € A; such
that d;(s;,a;)(s;41) > 0. The definitions of prefix and length are analogous to the fiefirs in Sectior 2. For
i € {1,2}, we denote byPrefs,;(G) the set of finite prefixes iG that end in a state i§;. Theobservation sequence
of p = spapsia; ... for Playeri (i = 1,2) is the unique infinite sequence of observations and agti@sobs(p) =
00G0016102 . .. Such thats; € o; for all j > 0. The observation sequence for finite sequences (prefix gEpla
defined analogously.

StrategiesA pure strategyin G for Playerl is a function« : Prefs; (G) — A;. A randomized strategin G for
Playerl is a functiona : Prefs; (G) — D(A;). A (pure or randomized) strategyfor Player1 is observation-based
if for all prefixesp, p’ € Prefs;(G), if obs(p) = obs(p’), thena(p) = a(p’). We omit analogous definitions of
strategies for Playet. We denote bydq, A%, AL, Bg, BS, BE the set of all Playet-strategies inG, the set of all
observation-based Playérstrategies, the set of all pure Playlestrategies, the set of all PlayRistrategies irnG, the
set of all observation-based Playzstrategies, and the set of all pure Plagestrategies, respectively. In the setting
where Playeil has partial-observation and Playzhas complete observation, the &k of all strategies coincides
with the setBg of all observation-based strategies. We will require ttagets to play observation-based strategies.

OutcomesThe outcomeof two randomized strategies (for Player1) and g (for Player2) from a states in G

is the set of playp = spagsiai... € Plays(G), with so = s, where for allj > 0, if s; € S; (resp.s; €
S2), thena(p(j))(a;) > 0 (resp.B(p(j))(a;) > 0) anddi(s;, a;)(sj+1) > 0 (resp.da(s;,a;)(s;j+1) > 0). This
set is denotedutcome(G, s, o, 3). The outcome of two pure strategies is defined analogouslyidying pure
strategies as randomized strategies that play their chas@n with probability one. Theutcome sebf the pure
(resp. randomized) strategyfor Playerl in G is the sefOutcome; (G, s, «) of playsp such that there exists a pure
(resp. randomized) strategyfor Player2 with p € Outcome(G, s, o, 3). The outcome seéDutcomes (G, s, ) for
Player 2 is defined symmetrically.

Probability measureWe define the probability measuR?.fj’ﬁ(-) as follows: for a finite prefiyp, let Cone(p) denote
the set of plays withy as prefix. Then we haver?” (Cone(s)) = 1, and for a prefix of length ending in a Player 1
states,, we have

Pr?’ﬁ(cone(PGnSnﬁ-l)) = Prg"@(COne(p)) ~a(p)(an) - 61(Sn, an)(Snt1);



and the definition when,, is a Player 2 state is similar. For a ggtof finite prefixes, we WritEPr?’B(Cone(Q)) for
P12 (U e o Cone(p)).

The winning modes sure, almost-sure, and positive are dkdinalogously to Sectidni 2, where we restrict the play-
ers to play an observation-based strategy. From the resiit2[1,3,6] we obtain the following theorem summarizing
the results for partial-observation games and POMDPs.

Theorem 1 ([7.2,1,3,6])The following assertions hold:

1. (One-sided games and POMDPSEhe sure, almost-sure and positive winning for safety dhjes; the sure and
almost-sure winning for reachability objectives anddBi objectives; the sure and positive winning for éaBi
objectives; and the sure winning for parity objectives alFH IME-complete for one-sided partial-observation
games (Player 2 perfectly informed) and POMDPs. The pe@sitiinning problem for reachability objectives is
PTIME-complete both for one-sided partial-observatiomgs and POMDPs.

2. (General partial-observation game$he sure, almost-sure winning for safety objectives, the ainning for
parity objectives are EXPTIME-complete for partial-ob&sion games; the almost-sure winning for reachability
objectives and Bchi objectives, and the positive winning for safety and ioB objectives are 2EXPTIME-
complete for partial-observation games. The positive wigproblem for reachability objectives is EXPTIME-
complete.

3. (Undecidability results)The positive winning problem foriBhi objectives, the almost-sure winning problem for
coBuchi objectives, and the positive and almost-sure winniadplems for parity objectives are undecidable for
POMDPs.

4 Reduction: Games with Probabilistic Uncertainty to Partial-observation Games

We now present a reduction of games with probabilistic uadsly to classical partial-observation games. Get=
(L, X1, X0, A, un) be a game with probabilistic uncertainty and we construciréigl-observation gamf = (L x
LUL XL x X, A = X1, Ay = Yo,6 = 61 U 2,01, 05) as follows (below ag; andd, would be clear from
context, we simply usé for simplicity):

1. The transition functiod; is deterministic and fof¢;, ¢s) € L x L ando; € X1 we have
6((£1a £2)7 UI) = (éla £27 UI)

2. The transition functiod, captures bottd andun and is defined as follows: fq¥1, ¢3,07) € L x L x Xt and
oo € Yo we have

6(@1’@2’01)’00)( /1’£/2) = A(ZlvafvaO)(éll) : un(f/l)(gé)

Intuitively, the first component of the ganfé keeps track of the real state of the gaéieand the second com-
ponent keeps track of the information available from pralisitr uncertainty. Hence Player 1 is only allowed to
observe the second component which is the probabilityidigton over the observable state given the current
state.

3. The observation mapping is as follows: we hé&4e= L; andobs; (¢, ¢2) = obsi({1,£2,07) = {5, i.€., only the
second component is observable. We will consider two casa84: for the reduction of all-powerful strategies
we will consider Player 2 has complete-observation, anderother case we hav®, = L and Player 2 observes
the first component that represents the correct historyobey ({1, £2) = obsg ({1, 2, 01) = 1.

4. For a parity objective iid given by priority functionpe : L — {0,1,...,d}, we consider the priority function
pr in H as follows:py ((¢,¢)) = pu((¢,¢,01)) = pa(£), forall £, ¢ € L ando; € Xy.

Correspondence of strategieswe will now establish the correspondence of probabilisticartain strategies itv
and the observation based strategieg/inWe present a few notations. For simplicity of presentatioa will use a
slight abuse of notation: given a history (or finite prefix) = sgagsiaiszas - . . s2, in H we will represent the history
asspapals2a2a3Ss3 - . . Sop, AS the intermediate state is always uniquely defined by #ie and the action. Intuitively
this is removing the stuttering and does not affect parifgctives.



Mapping of strategies frort¥ to H. Given a historypy = spapaisaasasss . .. s2, in H, such thatsy; = (€3, 43,),
we consider two histories i@ as follows:

g1 (pH) = Eéaoalféagag e g%n, gg(pH) = Z(Q)aoal@ag% . f%n

Intuitively, g; gives the first component (which is the correct history) andives the second component (which is the
observed history). We now define the mapping of strategas & to H: given strategyy for Player 1, a strategy
Bc for Player 2, and an all-powerful strategy: for Player 2, in the gamé&, we define the corresponding strategies
in H as follows: for a history g and an actiom; for Player 1 we have

an(pr) = ac(g2(pm));
Bu(pr ai) = Ba(g1(pm) ai);

B (pr ai) = B&(91(pu), 92(pm ), ai).-

Note thatay and 3y are observation-based strategies, adis a strategy with complete-observation, i.e., all-
powerful strategies are mapped to complete-observatiategies. Hence for all-powerful strategies the reduction
is to one-sided games. We will ugeto denote the mapping of strategies, i®y = g(ag), Bz = 9(Bc), and

B = 9(BE)-

Mapping of strategies frorff to G. We now present the mapping in the other direction diet= (i oloilioia? ... 0L,
andp?, = (3ologlicoio? ... (2 be two prefixes irG. Intuitively, the first represent the correct history ane second
the observed history. Then we consider the following setsibhies inH:

hi(ps) = {pm | 91(pm) = p&ts  ha(pE) = {pm | 92(pr) = P&}

and

th(ﬁéaPQG) = (65723)0608(@:’[%)010? (E:uégz)
We now define the mapping of strategies. Given an observhtised strategyy < A for Player 1, observation-
based strateggy € B for Player 2, and complete observation-based stratégy= By, we define the following
strategies irG: for a correct history., observed historyZ,, and inputs® we have

Ba(ps 0') = Bulpu 0');  pr € hi(pg);
ac(pg) = an(pn); pu € ha(pg);

Bé(péa pQGa Ui) = Bg(hIQ (pé:a p2G)7 Ui)-

Note that sincéy is observation-based it plays the same fopall€ 1 (pl;), and similarly, sincev; is observation-
based it plays the same for all; € h2(p2). Also observe that the strategy is an all-powerful strategy. We will use
1 to denote the mapping of strategies, ices, = h( "), B = h(BH) andgg = (ﬁH)

Given a starting stat& € G, consider the following probability distributiomin H: (4o, £) = un(¢)(¢). Given
the mapping of strategies, our goal is to establish the aetprices of the probability measure. We introduce some
notations required to establish the equivalence. For 0, we denote by(r} T, J) the pair of random variables to
denote thej-th Player 1 state of the ganié, and byG;- and¢? the random variables for the actions following the
j-th state. Our first lemma establishes a connection of thiegtitity of observing the second componentingiven
the first component along with functicmbsSeq We introduce notations to define two events: given two pesfix

pe = lyosoglioiay .. 0y, andpg, = (Gogoglioto? .. Lo in G, let £11(pg, p;) denote the event that for all
0 < j < nwe haver; = E},TJ = (5 andforall0 < j <n —1we havet = o},09 = 09, and&;(p¢;) denote the
event that foralD < j < nwe haver1 = é; andforall0 <j<n-—1we have@Z = crj, 9;’ =09.

Lemma 1. Letpl, = lioioglioio? ... LL, andpZ = (ioiogliotof ... (2 be two prefixes 7. Then for all strate-
giesay and By, the probability that the second component sequendé is pZ, given the first component sequence
is pg, is ObsSeq(pg;) (pZ,), i.e., formally

Pr 24 (E1,5(pks, %) | E1(pls)) = ObsSeq(pls) (03,



Proof. The proof is by induction on the length of the prefixes. Theshzese is as follows: let the length of prefixes
p& andpZ be 1, withpl, = ¢y andp?, = ¢. Then we have

ObsSeq(£o)(£) = (o, £);

as required. We now consider the inductive case: we congidékespl.c’,0%/r  , andp%ol,o0(? . Letus consider

the events’! | = &1 2(p&olodly 1, piobodl? () andE2 | = & (pga;age}lgl). Let?,llJrl denote the event that
2 —

== =0, T2, = 2,,,0F = ol and#? = ¢2; andE, ., denote the event thaf. = ¢},

o1 =0 1,0) = o, andd2 = 2. Then by definition we have

5((8}15 &217 021)7 0?1)(&&17 Z%Jrl)
EE%]?HA 6((51117 é%a Griz)v U%)(gflﬂrlv é%erl)

(In the numerator all choices are fixed, and

=1 -2
PrzH,BH (gnJrl | gnJrl) =

in denominator are all possible choices of the second coemgdn

_ A(%a”im”ﬁ)(@}zﬂ) : Un@}zﬂ)(&%ﬂ)

AL, o, C’ﬂ)(ﬁzﬂ) : ZZELH un(£711+1)(£721+1)
= Un(£711+1)(£121+1) (SinceZng Un(%ﬂ)(@%ﬂ) =1)

Note tbat the crucial fagt used in the above proof is in the)lségaquality and the fact is thathor a?EL we have
S((EL, 02,00),02) (L 1,02 1) = A(LL, 0%, 02) (bngr) - un(Cny1) (€2 1) (ie., itis independent of?). Hence using

the above equality and inductive hypothesis we have:

e QH, . 1 =2
PrMHﬁH (gvlz-i—l | 5721-1—1) = Pr;LHﬂH (512(/)%17/)%1) | gl(pb)) ! PrMHﬂH (gn-i—l | gn-i—l)

— ObsSeq(pL)(p%) - Pre#-fn (€, . |E..))  (Byinductive hypothesis)
= ObsSeq(pg)(p

= ObsSeq(pg07,07 b 41) (PG 0007 1)

)-un(fh,)(¢2,,)  (By previous equality)

Qv QP

The desired result follows. ]
We will now establish the equivalences of the probabilitithe cones.
Lemma 2. For all finite prefixespf, in G, the following assertions hold:

1. For all strategiesvg, 8a, 34 (all-powerful), we have
~ —~ A ~ ~
P17 (Cone(pl)) = Pri@@)95¢) (Cone(hy (ps)));  Pry ¢ (Cone(pl)) = Pra@e)}9(33) (Cone(h: (p))).
2. For all strategiesvy, Bu, 85 (complete-observation), we have
(o) h ap, h(a ’A i am,By
Pry 1) (Cone(ply)) = Pr# % (Cone(ha(pg))):  Pry ™" (Cone(pl;)) = Priy# 7 (Cone(ha (p)))-

Proof. We will present the result for the first item, and the proof $econd item is identical. Let us denote by
ag = glag) andBy = g(Bc). We will prove the result by induction on the length of thefpxes. The base case

is as follows: let the length of the prefix, be 1, withpl, = ¢,. We observe thaPr?OG’BG(Cone(éo)) = 1, and
PrfjH’ﬂH (Cone(hi1(£p))) = 1, and for all other cones of lengththe probability is zero. This completes the base case.
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We now consider the inductive case: by inductive hypotheeis assume thaPr;¢’¢ (Cone(pl)) =
Pro%1 (Cone(hi(pg))); and show that

PrZ}GﬁG(Cone(pbanbnﬁnﬂ)) = Prfj”'ﬂH (Cone(h1(p&anbnlni1)))-
Let 4, be the last state of},. We first consider the left-hand side (LHS):
Pr ;9% (Cone(pkanbnln+1))
= P Cone(pl))- (Y ObsSealol)e) - ac(s)(an) Bl )0) - Allwsans b))

p' EActMt(pl,)

= Prﬁ’*ﬁH(@ne(hl(pa)))-( > ObsSeq<pa><p'>-ac<p'><an>-ﬂe<paan><bn>-A<en,an,bn><en+1>>

p' EActMt(pl,)

- Z PrﬁH’BH (Cone(hl2(Péa p))) - ac(p')(an) - BG(péan)(bn) Al an, by) (lny1)
p' €ActMt(pl,)

Above the first equality is by definition, the second equdliyinductive hypothesis, and the last equality is obtained
from Lemmd1 as follows: by Lemnia 1 we ha®esSeq(p,)(p') = Per’ﬁH (E12(p&, P") | E1(pg)), and hence

Pro 0 (Cone(h (p)))- 3. ObsSeq(pl)(s')

p' €ActMt(pl,)

= Y. PrpnPu(Cone(hi(pg))) - Py P (E12(pt, 0') | E1(08))
P’ €ActMt(pl,)

= 3 PO (Cone(ha(ph, ).
p' €EActMt(pg;)

We now consider the right-hand side (RHS); "’ 1 (Cone(hy (pLanbnlny1))) and the RHS can be expanded as:
(below for brevity we writep = hi2(p, p'))

> Y Pram(Cone(p)) - am(p)(an) - Br (Pan)(bn) - 5((€n, €y an), bn) (bnirs L)
p' EActMt(pg,) €n+1

Since we have

CYH(hlz(Pé:, P/))(an) = aG(P/)(an); and ﬁH(hm(pb, p/)an)(bn) = ﬁG(péan)(bn)v

the above expression for RHS is equivalently described as:

Z Z Pfﬁ”’ﬂH (Cone(hi2(p&;, ) - ac(p)(an) - Ba(pGan) (bn) - Alln, @, by) (ns1) - un(ln41) (6 41)
p' €ActMt(pl,) €7, 11
Since)_, B un(n41)(0,41) = 1, it follows that LHS is equal to the RHS. The result for copesdence for all-
powerful strategy3Z is essentially copy-paste of the above proof replacingamyately ¢ by 34. This completes
the proof and the desired result follows. ]

It follows that there is a sure, almost-sure, positive wirystrategy irG for Parity(p¢ ) iff there is a corresponding
one inH for Parity(py) and hence from Theorelm 1 we obtain the following result.

Theorem 2. The following assertions hold:

1. (All-powerful Player 2) The sure, almost-sure and positive winning for safety dhjes; the sure and almost-sure
winning for reachability objectives andiBhi objectives; the sure and positive winning for §eBi objectives;
and the sure winning for parity objectives can be solved ifPEMIE for games with probabilistic uncertainty
with all-powerful strategies for Player 2. The positive wiimg for reachability objectives can be solved in PTIME.



2. (Not all-powerful Player 2)The sure, almost-sure winning for safety objectives; aedstive winning for parity
objectives can be solved in EXPTIME; the almost-sure wipfin reachability objectives andi®hi objectives;
the positive winning for safety and cdéhi objectives can be solved in 2EXPTIME for games with giodlstic
uncertainty without all-powerful strategies for PlayerThe positive winning for reachability objectives can be
solved in EXPTIME.

5 Reduction: POMDPs to Games with Probabilistic Uncertainy

In this section we present a reduction in the reverse daeeihd show that POMDPs with parity objectives can be
reduced to games with probabilistic uncertainty and pafijectives. We first present the reduction and then show
the correctness of the reduction by mapping prefixes, giegeand establishing the equivalence of the probability
measure.

Reduction: POMDPs to games with probabilistic uncertainty Let H = (S, A, §,O) be a POMDP with a parity
objectiveg, we construct the game of probabilistic uncertaiity= (L, X', X0, A, un) as follows:

-L=S5,
- XY= A
—Eoz{J_};

— Fort € Landa € XyletA(4,a, L)(¢) = 6(¢,a)(¢'),i.e., the transition function is same as the transitiorcfiom
of the POMDP. In other words, the state space is the samectiom &hoices of the POMDP corresponds to the
input action choice, and the output action set is singletod the transition function mimics the transition function
of the POMDP. Below we use the probabilistic uncertaintyaptare the partial-observation of the POMDP.

. L 0 if obs(¢) # obs(¢')
— The uncertainty function is as followsn(¢)(¢') = :
y ) {W ionri et

The parity objective is the same as the original parity dbjec

Mapping of prefixes. Given a prefix (or a finite history)y = spagsiaiss ... s, in H we construct a prefix id as
pc = spaolsiailss...s, by simply inserting thel actions. This construction defines a bijection Prefsy —
Prefs between prefixes. We can naturally extend the mapping too$eteefixes. Letl C Prefsy, thenh/(¥) =

{h(p) | p €V}
Lemma 3. For prefixesp, p’ in G the following assertion holds:

=T If obs(h ! — obs(h=1(p)) = 10,
ObsSeq(p)(p’) = Hi:1|0i| obs( (p)) = obs( (p") = 010102 .. .an—10

0 Otherwise

Proof. We prove the result by induction on the length of prefixes. Weamly considerp andp’ that have the same
length, as otherwise by definition the observation sequpragability is 0. We first consider the base case.

Base casd.et /y be the initial state. Thep = ¢, and letp’ = ¢ for somel € L. Then:

1
ObsSeq (4o, £) = un(fy,£) = |obs(¢o)]

if o and? have the same observation enhdtherwise. This proves the base case.

Inductive stepWe now consider prefixes of length+ 1, and by inductive hypothesis the result holds for prefixes of
lengthn. Then

ObsSeq(panLlni1)(p'anLl;, ;1) = ObsSeq(p)(p') - un(lnt1)(£11)-
We now consider two cases to complete the proof.

— If obs(h™!(panLlyi1)) # obs(h™(p'an Ll )), then eitheobs(h~'(p)) # obs(h='(p’)) or obs(f41) #
obs(¢;,, ). It follows that one of the factorfbsSeq(p)(p’) or un(f,41)(¢;, 1)) is equal to) and hence:

ObsSeq(pan Llyi1)(p'anlt;, 1) =0

10



— Otherwise, we havebs(h =1 (pa,, Ll,11)) = obs(h_l(p'anj_éilﬂ)) = 010102 . .. Un_10r0n0nt+1- THEN:
1 11
T ol Tonnal ~ TT o

The desired result follows. |

Obsseq(panj—én-ﬁ-l)(planj—[;ﬁ-l) = ObsSeq(p)(p’) ’ un(€n+1)( ;H—l) =

Mapping of strategies.We first present the mapping of strategies fréhto G and then from to H. Note that in
the game?, there is no choice for Player 2, and hence we remove the IP2agteategies in the descriptions below.

Mapping strategies fromH to G. Let ay be an observation-based Player-1 strategyHnand pg =
spapLsia; Lsy. .. s, be aprefixinG. We define a Player-1 strategy; in G as follows:ac (pg) = an(h™(pa)).

Mapping strategies frortr to H. Let o be a Player-1 strategy (6 andpr = spagsiaiss - . . s, be a prefix ind with

0 = opago1a10s . ..o, as its observation sequence. Note that as Player 2 has oalgtategy (always playing)
we omit it from discussion. Note that evesye ActMt(h(pg)) can have different actions with different probabilities
enabled. We define a Player-1 strategy in H as follows: for an actiom € A we have

an(pw)(a) = > ObsSeq(h(pm))(p') - ac(p')(a).

p' EActMt(h(prr))
We now show that the strategyy is an observation-based strategy for Player 1 in the POMDP.
Lemma 4. The strategyry obtained from strategy is an observation-based strategy for Player 1Hn

Proof. Let py andp’; be two prefixes in that match in observation sequence and we need to argue ghplays

the same for both prefixgsy andp’;. Observe that sincer andp’; has the same observation sequence, we have
ActMt(h(pr)) = ActMt(h(p’y)). Moreover it follows from Lemma&l3 thaDbsSeq(h(pr)) only depends on the
observation sequence pf; and hence for alp’ € ActMt(h(prr)) = ActMt(h(py)) we haveObsSeq(h(pm))(p') =
ObsSeq(h(p))(p'). It follows that for all actions: € A we haveay (pr)(a) = an(ply)(a). It follows thatay is
observation based. |

Correspondence of probabilities.In the following two lemmas we establish the corresponderfitkee probabilities
for the mappings.

Lemma 5. Let us consider the mapping of strategies fréhto G. For all prefixespy in H we have
Pri;" (Cone(pn)) = Pry?(Cone(h(pm)))-

Proof. The proof is based on induction on the length of the prefix We denote the last state of; by ¢,,.
Base caseror prefixes of length 1 wherg; = ¢, we getPr;;” (Cone(¢y)) = 1 andPr;' (Cone(h({p))) = 1. For all

I
other prefixes both sides are equabtdience the base case follows.

Inductive stepBy inductive hypothesis we assume the result for prefixgsof lengthn (i.e., we assume that
Pri;" (Cone(pn)) = Pry?(Cone(h(pm)))) and will show that

Prii# (Cone(prantnir)) = Pry ¢ (Cone(h(pr antnir)))-
First we expand the left hand side (LHS) and by definition wethyzt:
Pri# (Cone(pp antni1)) = Pri* (Cone(pr)) - o (pr)(an) - 6(bn, an)(Cni1).
We now expand the right hand side (RHS) and get that:

P13 (Cone(h(prrantut1))) =

Py (Cone(h(pm))) - > ObsSeq(h(p))(p') - ac(p')(an) - A(ln, an, l)(€n+1))

p' €ActMt(h(pm))
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Using the inductive hypothesis, the definition of the gameé, he mapping of strategies we get on the RHS:
Pr¢ (Cone(h(prantni1))) =

Prii# (Cone(pn)) - > ObsSeq(h(pm))(p') - arr (B (p"))(an) - 8(En, an)(€n+1))

p' €ActMt(h(pm))

For all p’ that do not match the observation sequenci(pt; ), we haveObsSeq(h(pg))(p') = 0 (by Lemmd3B), and
asay is observation based for all € ActMt(py) that matches the observation sequenck(pf;), the strategyvy
plays the same. Let us denote iy~ h(py ) thatp’ matches the observation sequencé @fy ). Then we have

> ObsSeq(h(pu))(p"): am(h™(p"))(an)

p' €ActMt(h(pm))

= ObsSeq(h(pu))(p') - am(h™(p"))(an)
p'EActMt(h(pn)),p'~h(pH)

- . ObsSea(h(pr))(p') - i (prr) (an)

p'€ActMt(h(pH)),p'=h(pH)

= amp(pw)(an);

where the first equality follows as for all sequengédhat do not match the observation sequencé(@fy) we

have ObsSeq(h(px))(p') = 0; the second equality follows as for all ~ h(py) we haveay (h=1(p))(an) =

ag(pm)(an) (8say is observation based); and the last equality follows bezag@bsSeq is a probability distribution
We haved© e aceme(h(pm ) o ~h(pr) OPSSEA(R(pr))(p") = 1. Hence we have

Py (Cone(h(prantnir))) = Pry™ (Cone(pn)) - am(pm)(an) - 6(bn, an)(Cny1)
Thus we have that LHS and RHS coincide and this completesrttd.p ]
Lemma 6. Let us consider the mapping of strategies frénto H. For all prefixesps in G we have
Pr# (Cone(h™" (pa)) = P (Cone(pc)

Proof. The inductive proof is as follows and we will denote the ldatesofps as/,,. The base case is similar to the
base case of Lemma 5. We now present the inductive case.

Inductive stepBy inductive hypothesis we assume the result for prefixgsof lengthn (i.e., we assume that
Pri# (Cone(h™ ' (pc))) = Pr{¢ (Cone(pc))) and will show that

Pri (Cone(h ™ (pgantni1))) = Pry ¢ (Cone(pcanlni1))-
First we expand the right hand side (RHS) and by definition etelfuat:

Pry ¢ (Cone(pgantni1)) = Pry (Cone(pg)) - ( Z ObsSeq(pc)(p') - ag(p')(an) - Ay, an, J_)(én+1)>

p'€ActMt(pg)

As A(¢y,, ap, 1)(¢,+1) does not depend omf we get:

Pr?f(Cone(pGanenm)—Pr?f(Cone(pcn-Awman,wnm( ) ObsSeq<pG><p'>~ac<p'><an>>

p' €ActMt(pg)
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We will now show that the expansion of the left hand side (LEISY gives the same expression. pgt= h~*(pg).
By expanding the LHS we get:

P (Cone(h ™ (pgantni1))) = Prjy" (Cone(h™1(p))) - art (h ™ (pa))(an) - (L, an)(fnir)
~an(pm)(an) - 6(ln, an)(ni1)
~an(pr)(an) - A(ln, an, L)(Cny1)

= Pry7(Cone(pa)) - an(pu)(an) - Alln, an, L)(lni1);

where the first equality is by definition; the second equadityy simply re-writingh ! (pc) aspzx; the third equality

is by the definition ofA and §; and the final equality is the inductive hypothesis. By d&bini of gy we have
ag(pm)(ay) = (Zp’eActMt(pc) ObsSeq(pc)(p') - aG(p’)(an)); and hence it follows that LHS and RHS coincide.
Thus the desired result follows. ]
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The previous two lemmas establish the equivalence of thegmiity measure and completes the reduction of
POMDPs to games with probabilistic uncertainty. Hence ¢ineel bounds for POMDPs also gives us the lower bound
for games with probabilistic uncertainty. Hence Theokéral@ng with the reduction from POMDPs and Theofdm 1
gives us the following result for games with probabilisticertainty (the results are also summarized in Table 1).

Theorem 3. The following assertions hold:

1. (All-powerful Player 2) The sure, almost-sure and positive winning for safety disjes; the sure and almost-sure
winning for reachability objectives andiiBhi objectives; the sure and positive winning for éaBi objectives;
and the sure winning for parity objectives are all EXPTIM&ntplete for games with probabilistic uncertainty
with all-powerful strategies for Player 2. The positive wiimg for reachability objectives is PTIME-complete.

2. (Not all-powerful Player 2)The sure, almost-sure winning for safety objectives; aedstive winning for parity
objectives are all EXPTIME-complete; the almost-sure wigrfor reachability objectives andi®hi objectives;
the positive winning for safety and coéhi objectives can be solved in 2EXPTIME and is EXPTIMEtHar
games with probabilistic uncertainty without all-powdrtrategies for Player 2. The positive winning for reach-
ability objectives can be solved in EXPTIME.

3. (Undecidability results)The positive winning problem foriBhi objectives, the almost-sure winning problem for
coBuchi objectives, and the positive and almost-sure winnimdplem for parity objectives are undecidable for
games with probabilistic uncertainty.

Sure Almost Positive
All-powerful |Not-all-powerful All-powerful |Not-all-powerful All-powerful |Not-all-powerful
Safety EXP-complet¢ EXP-complete| EXP-complet¢ EXP-complete| EXP-complete| 2EXP, EXP
Reachability| EXP-complet¢ EXP-complete| EXP-complet¢ 2EXP, EXP |PTIME-complet¢ EXP, PTIME
Buchi EXP-complet¢ EXP-complete| EXP-complet¢ 2EXP, EXP Undec. Undec.
coBlichi EXP-complet¢ EXP-complete Undec. Undec. EXP-complete| 2EXP, EXP
Parity EXP-complet¢ EXP-complete Undec. Undec. Undec. Undec.

Table 1. Complexity of games with probabilistic uncertainty withripaobjectives, where for each entry we present
the upper and lower bound, or undecidability.

6 Conclusion

In this work we considered games with probabilistic undatyawhich is natural for many problems, and has not
been considered before. We present a reduction of such gamksssical partial-observation games and a reduction
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of

POMDPs to games with probabilistic uncertainty. As a emugence we establish the precise decidability frontier

for games with probabilistic uncertainty. Table 1 summesiaur results. For most problems we establish EXPTIME-

co

mplete bounds. For some decidable problems we estaldlisSRPIME upper bounds, and EXPTIME lower bounds,

and establishing the precise complexity results are istieigopen problems.
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