Abstract
Problems of dense partial correspondence for meshes of variable topology are ubiquitous in medical imaging. In particular, this problem arises when constructing average shapes and probabilistic atlases of partial skull models. We exploit the roughly spherical extrinsic geometry of the skull to first approximate skull models with shapes of spherical topology. The skulls are then matched parametrically via a non-local non-linear landmark search using normalized spherical cross-correlation of curvature features. A dense spherical registration algorithm is then applied for a final correspondence. We show that the non-local step is crucial for accurate mappings. We apply the entire pipeline to low SNR skull meshes extracted from conical CT images. Our results show that the approach is robust for creating averages for families of shapes that deviate significantly from local isometry.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Granger, S., Pennec, X.: Multi-scale EM-ICP: A Fast and Robust Approach for Surface Registration. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002, Part IV. LNCS, vol. 2353, pp. 418–432. Springer, Heidelberg (2002)
Bronstein, A., et al.: Generalized Multidimensional Scaling: A Framework for Isometry-Invariant Partial Surface Matching. PNAS 103(5), 1168–1172 (2006)
Bronstein, A., et al.: A Gromov-Hausdorff Framework with Diffusion Geometry for Topologically-Robust Non-Rigid Shape Matching. IJCV 89(2-3), 266–286 (2010)
Gu, X., Wang, Y., et al.: Genus Zero Surface Conformal Mapping and its Application to Brain Surface Mapping. IEEE Transactions on Medical Imaging 23(8), 949–958 (2004)
Yeo, T., et al.: Spherical Demons: Fast Diffeomorphic Landmark-Free Surface Registration. IEEE TMI 29(3), 650–668 (2010)
Reuter, M.: Laplace-Beltrami Spectra as ’Shape-DNA’ of Surfaces and Solids. Comput. Aided Des. 38(4), 342–366 (2006)
Cootes, T.F., et al.: Active Shape Models—their Training and Application. Comput. Vis. Image Underst. 61(1), 38–59 (1995)
Zou, G., Hua, J., Muzik, O.: Non-rigid Surface Registration Using Spherical Thin-Plate Splines. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part I. LNCS, vol. 4791, pp. 367–374. Springer, Heidelberg (2007)
Chung, M.: Heat Kernel Smoothing on the Unit Sphere. In: ISBI 2006, pp. 992–995 (2006)
Huhle, B., et al.: Normalized Cross-Correlation using SOFT. In: LNLA, pp. 82–86 (2009)
Healy, D., et al.: FFTs for the 2-Sphere-Improvements and Variations. J. Fourier Anal. App. 9(4), 341–385 (2003)
Kostelec, P., et al.: FFTs on the Rotation Group. J. Fourier Anal. App. 14(2), 145–179 (2008)
Sorgi, L., Daniilidis, K.: Normalized Cross-Correlation for Spherical Images. In: Pajdla, T., Matas, J. (eds.) ECCV 2004. LNCS, vol. 3022, pp. 542–553. Springer, Heidelberg (2004)
Freidel, I., et al.: Unconstrained Spherical Parameterization. J. Graphics, GPU and Game Tools 12(1), 17–26 (2007)
Gutman, B., et al.: Shape Matching with Medial Curves and 1D Group-wise Registration. In: ISBI (2012)
Davies, R., et al.: A Minimum Description Length Approach to Statistical Shape Modeling. IEEE TMI 21(5), 525–538 (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Gutman, B.A., McComb, R., Sung, J., Moon, W., Thompson, P.M. (2012). Robust Shape Correspondence via Spherical Patch Matching for Atlases of Partial Skull Models. In: Levine, J.A., Paulsen, R.R., Zhang, Y. (eds) Mesh Processing in Medical Image Analysis 2012. MeshMed 2012. Lecture Notes in Computer Science, vol 7599. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33463-4_10
Download citation
DOI: https://doi.org/10.1007/978-3-642-33463-4_10
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-33462-7
Online ISBN: 978-3-642-33463-4
eBook Packages: Computer ScienceComputer Science (R0)